
Towards a Scalable Parallel MLFMA
in Three Dimensions

Bart Michiels 1, Jan Fostier 1, Ignace Bogaert 1, Piet Demeester 1 and Daniël De Zutter 1

1Department of Information Technology (INTEC), Ghent, B-9000, Belgium
jan.fostier@intec.ugent.be

Abstract—The development of a scalable parallel Multilevel
Fast Multipole Algorithm (MLFMA) for three dimensional elec-
tromagnetic scattering problems is reported. In the context of
this work, the term ‘scalable’ denotes the ability to handle larger
simulations with a proportional increase in the number of parallel
processes (CPU cores), without loss of parallel efficiency. The
workload is divided among the different processes according
to the hierarchical partitioning scheme. Crucial to ensure the
scalability of the algorithm, is that the radiation patterns –
sampled on the sphere– are partitioned in two dimensions, i.e.
both in azimuth and elevation directions.

I. INTRODUCTION

In the past two decades, the Multilevel Fast Multipole
Algorithm (MLFMA) has been the focus of intense research
in the electromagnetics community as a means to accelerate
the matrix-vector product in the iterative Method of Moments
(MoM) solution of large scattering problems expressed as
boundary integral equations. Indeed, whereas the classical
evaluation of the dense matrix-vector product requires O(N2)
calculations, the MLFMA reduces this complexity to only
O(N logN), where N denotes the number of unknowns. In
practice, this means that simulations up to one million of
unknowns are feasible on a single workstation. Many problems
of realistic size however, are discretized into an even larger
number of unknowns (tens or even hundreds of millions of
unknowns). To allow such simulations, the MLFMA at hand
needs to be parallelized. This means that the algorithm needs
to be adopted in such a way that it can take advantage of a
distributed memory environment, i.e. a cluster of networked
computers.

Especially in the past decade, several parallel implementa-
tions of the MLFMA have been proposed by various authors.
The discriminating factor between the different approaches is
the way the workload in the MLFMA is divided among the
processes. The goal is to maximize both the problem size that
can be handled and the concurrency, i.e. the ability to per-
form certain computations simultaneously. The concurrency is
directly related to the parallel speedup, i.e. how many times
the parallel algorithm is faster than its sequential counterpart.
Because of the many data dependencies that exist within the
MLFMA and the rather large communication flows between
the processes, this speedup is always lower than the number
of processes used, even for the best implementations. As a
matter of fact, it is exactly this communication overhead that
makes the parallelization of the MLFMA difficult. The degree
of concurrency is often expressed as the parallel efficiency,

the ratio of the speedup to the number of processes used.
Several parallel implementations have been reported that can
handle hundreds of millions of unknowns using over hundreds
of parallel processes, with efficiencies exceeding 70%.

In this contribution, we focus on a second important aspect
of parallel algorithms: the development of a scalable parallel
MLFMA. The term ‘scalable’ is often (mis)used to indicate the
fact that for a problem of certain fixed size, an implementation
exhibits a ‘good’ parallel efficiency using a ‘large’ number of
parallel processes, where the exact interpretation of ‘good’
and ‘large’ varies largely between authors. Whether or not
the same efficiency can be attained for larger problems and/or
larger parallel systems is usually ignored. In this manuscript,
we adopt the following definition for scalability: an algorithm
is said to be scalable if the number of parallel processes P can
increase proportionally with the number of unknowns N (i.e.
P = O(N)) without loss of parallel efficiency. Note that this
definition by no means implies that the number of processes
should increase linearly with the number of unknowns, let
alone that the number of processes is defined by the number
of unknowns in a fixed way. Rather, scalability denotes that a
problem twice as big can be handled with twice the number
of processes, with the same parallel efficiency as the original
problem. Because the complexity of the sequential MLFMA
is O(N logN), the ability to have P = O(N) processes
implies that the memory, computational and communication
complexity for each individual process should not exceed
O(logN).

The scalability of the MLFMA is closely related to the parti-
tioning of the workload, as will be further elaborated upon. For
the two-dimensional MLFMA, a scalable implementation has
been presented in [1]. In this contribution, we extend this work
to three dimensions. To the best of the authors’ knowledge, no
truly scalable parallel MLFMA in three dimensions has been
presented up to date.

The development of scalable parallel algorithms is rapidly
gaining attention, not only from a theoretic point of view, but
also and more importantly because CPU vendors are embrac-
ing the multi-core paradigm as a way to advance computational
power. Indeed, the speed of a single core has increased only
moderately in the past decade and a more powerful computing
environment is assembled by incorporating more CPU cores
in a system and/or by building large clusters of networked
computers. It is likely that this trend will continue in the next
years.



This paper is organized as follows: in Section II, we will
revise the data structures of the MLFMA. Next, in Section
III, a number of partitioning schemes (so-called spatial, k-
space and hybrid) will be discussed and will be demonstrated
that they do not lead to a scalable algorithm. In Section IV,
we will revise the hierarchical partitioning scheme and show
that it does yield a scalable algorithm provided that a two-
dimensional partitioning of the radiation pattern sample points
is used. Finally, in Section V, we present such implementation
and prove its scalability.

II. MLFMA DATA STRUCTURES

For an introduction to the MLFMA, we refer to [2]. In
this Section, we restrict ourselves to an outline of the data
structures in the MLFMA.

Consider a three dimensional high-frequency boundary in-
tegral equation problem (i.e. a problem with a size much
larger than the wavelength λ) for which the geometry under
consideration has been discretized into triangular elements of a
size of approximately λ/10. Over these triangles, N unknowns
are defined using the standard schemes (e.g. RWGs [3]). The
MLFMA recursively subdivides the geometry in an octree of
boxes until a box size of approximately λ/2 is obtained at
the lowest level. Only non-empty boxes are retained. At the
lowest level in the tree, each box contains O(1) unknowns,
hence, there are O(N) boxes. For every next level, the number
of boxes decreases roughly by a factor of four. The top level
consists of a single box. Hence, the tree consists of O(logN)
levels in total.

Each box in the tree contains a number (the exact number
depends on which integral equation formulation is used) of so-
called radiation patterns, sampled on the sphere. This radiation
patterns is a far field description of the part of the geometry
that is enclosed in the box. The number of sampling points
required to represent the radiation pattern in an accurate way
depends of the electrical size of the box. At the lowest level,
the number of sampling points in each of the O(N) boxes
is O(1) (i.e. independent of the number of unknowns N ).
For every next level, this number of sampling points increases
roughly by a factor of four. Because the number of boxes
decreases by the same factor, the number of sampling points
at every level remains roughly the same. At the top level, there
is a single box that contains O(N) sampling points. Hence,
each of the O(logN) levels contains O(N) sampling points in
total. In the MLFMA, the number of calculations to perform
per sampling point is constant, hence the total computational
and memory complexity of the MLFMA is O(N logN).

III. PARTITIONING SCHEMES

In this Section, we review a number of partitioning schemes
for the distribution of the data structures in the MLFMA
among different parallel processes and investigate their scal-
ability. We remind the reader that the scalability implies
the ability to have P = O(N) processes and that each
individual process should not exhibit a memory, computational
or communication complexity that exceeds O(logN). The

1 2 3 4 5 6 7 8 9

1

4

2

3

5

8

6

7

9 10

11

14

1615

13

12

1

13

5

9

2

14

6

10

3

15

7

11

4

16

8

12

16151413121110

Fig. 1. Hierarchical k-space partitioning scheme for an MLFMA tree with
3 tree levels and 16 processes. The cubes represent boxes in the MLFMA
tree, the dots in the cubes represent radiation pattern sampling points. The
numbers represent the different processes (0-15). At the lowest level, spatial
partitioning is used. At the next level, boxes are shared by four processes
each holding one fourth of the sampling points. At the top level, full k-space
partitioning is obtained.

following partitioning schemes all have in common that they,
one way or another, distribute the sampling points among
the different processes. If a certain sampling point is local
in the memory of a certain process, all computations with
respect to that particular sampling point will be handled
by that process. To perform these calculations, data local
in the memory of another process might be required and
will have to be communicated first. As a first remark, note
that it is useless to partition between the different levels in
the MLFMA tree. This is because the radiation patterns on
a certain level are recursively calculated from the radiation
patterns on the underlying levels. Therefore, no concurrency
would be achieved with such scheme. In order to achieve
concurrency, the sampling points on each level need to be
distributed among the processes, in the most uniform possible
way.

Spatial partitioning: in spatial partitioning, the boxes and
their associated radiation patterns as a whole are partitioned
among the participating processes at each level. Clearly, this
scheme is not scalable. Stated simply: to partition boxes among
P = O(N) nodes in a balanced way, there have to be
O(N) boxes. This is only the case at a constant number
of lowest levels. At the top levels, certain processes are
attributed a box with O(N) radiation pattern sampling points.
Hence, the memory and computational complexity for that
node will also be O(N), exceeding the O(logN) constraint.
Spatial partitioning however, has been used frequently in early
parallelization attempts. The reason for that is that (a) the
scheme is fairly easy to implement and (b) for a smaller (and
fixed) number of processes (e.g. 16 processes), a reasonably
balanced workload division can be achieved with this scheme.
For a larger number of processes, however, the workload
will become unevenly divided, a problem that get worse if
the number of processes increases further, no matter how
large the number of unknowns. Therefore, spatial partitioning
allows for only P = O(1) processes. In order to minimize



communication flows between processes, parent and child
boxes are attributed to the same process as much as possible.
For the translation phase however, significant communications
flows are required when the two interacting radiation patterns
are stored in the memory of different processes.

k-space partitioning: k-space partitioning is the dual variant
of spatial partitioning. Instead of distributing the boxes among
all processes, the sampling points within each box are dis-
tributed among all process. Similarly, in order to partition sam-
pling points among P = O(N) processes in a balanced way,
one needs O(N) radiation patterns. Such radiation patterns can
only be found at a constant number of top levels. For the lower
levels, k-space partitioning can not provide for a balanced
load division. For the same reason as for spatial partitioning,
k-space partitioning allows for only P = O(1) processes.
Note that even though k-space partitioning is asymptotically
is as good (or as bad) as spatial partitioning, no pure k-
space implementations have been reported, to the best of our
knowledge. Note that for k-space partitioning, the translation
phase is completely communication-free. The aggregation and
disaggregation phase however, do require substantial commu-
nications.

Hybrid partitioning: Hybrid partitioning [4], [5] combines
the two approaches mentioned above: spatial partitioning is
used for the lowest levels, whereas k-space partitioning is used
for the higher levels. The optimal transition level is the middle
level in the tree. This level consist of O(

√
N) boxes each

containing O(
√
N) sampling points. It is easy to show that the

computational, memory and communication complexity per
node is then also O(

√
N). Hence, hybrid partitioning allows

for P = O(
√
N) processes, a clear improvement over spatial

and k-space partitioning.
Hierarchical partitioning: The hierarchical partitioning

scheme, first introduced in [6], is the next logical step to
assign workload to the different processes in a more balanced
way. This is achieved by adapting the partitioning strategy
dynamically at each level. At the lowest levels, spatial parti-
tioning is used. At the next level, a box is shared among four
processes, however, each process now holds only one fourth of
the sampling points of the radiation pattern within that box. At
the next level, the sampling points are partitioned among 16
processes, and so on, until full k-space partitioning is obtained
at the top levels (see Figure 1). Note that we assume for
simplicity that P is a power of four. In the next Section, we
will build upon the idea of hierarchical k-space partitioning
and address the question how the radiation patterns should
be partitioned among the different processes. We will then
show that, given and appropriate partitioning of the radiation
patterns, this scheme does lead to a scalable algorithm.

IV. A SCALABLE PARTITIONING SCHEME

In the previous Section, it was explained that the radiation
patterns are gradually partitioned in an increasing number of
1, 4, 16, . . . , P partitions. In this Section, we investigate how
this partitioning should be achieved.

As top level radiation patterns contain O(N) sampling
points, there are O(

√
N) sampling points in the azimuthal

direction (ϕ) and O(
√
N) sampling points in elevation (θ).

In the first reports of the hierarchical scheme [6], [7], the
radiation patterns are partitioned in a ‘strip-wise’ fashion by
distributing the values in one direction only, e.g. the azimuthal
direction (see Fig. 2 left). Clearly, it is not sustainable to
partition O(

√
N) values in the ϕ direction among O(N)

processes. Therefore, a strip-wise approach allows for only
O(

√
N) processes. A different way to look at this is by

considering the communications required to perform local in-
terpolations (usually by using Lagrange or BLIF interpolation)
on radiation patterns. In order to perform these interpolations
accurately, certain sampling points near the boundaries of
adjacent partitions need to be exchanged between processes. In
the strip-wise scheme, every partition has only two neighbors.
The amount of communications required however, is propor-
tional to the length of the boundary, in this case O(

√
N).

Therefore, the communication complexity of the strip-wise
scheme is O(

√
N). Even though this is asymptotically the

same complexity as the hybrid scheme, the scheme does
reduce the communications, and allows for a higher parallel
efficiency [7].

In this work, we present an implementation of the hierar-
chical scheme that is a based on a partitioning of the radiation
patterns in both azimuth and elevation [8] (see Fig. 2 right).
For simplicity, we make use of the uniform sampling method
introduced in [9]. This allows for a two-dimensional cartesian
grid layout of the sampling points that is can be readily
partitioned. Given a number of processes P = O(N), it is
clear that this scheme allocates O(1) sampling points to each
process at each level. This means that the memory complexity
for each node does not exceed O(logN) in total. Because
the calculation time is proportional to the number of sampling
points, the computational complexity for each individual node
is also O(logN). Because of the two-dimensional layout, the
communications required for the inter- and anterpolation stage
become more complex to implement. Indeed, each partition
has in general eight neighboring partitions instead of just two
for a strip-wise layout. Even though the number of commu-
nication events will increase because of this, the amount of
communications remains O(1). It is easily demonstrated that
the communication complexity for the translation phase, near
interactions, and repartitioning also does not exceed O(1).
This will be experimentally confirmed in the next Section.

V. RESULTS

The hierarchical scheme and the two dimensional partition-
ing of the radiation patterns has been implemented in C/C++.
The communications between the processes are handled us-
ing the Message Passing Interface (MPI). As a computer
infrastructure, we use a cluster of 128 machines with two
quad-core Intel Xeon CPUs each (1024 CPUs in total). As
interconnection network, an Infiniband network is used.

We will experimentally demonstrate that the communication
complexity of the proposed scheme is indeed O(1) per level.



TABLE I
THE MAXIMUM AMOUNT OF COMMUNICATION (INCOMING + OUTGOING) FOR A SINGLE NODE, PER LEVEL USING DIFFERENT PARTITIONING SCHEMES

(SPATIAL, HYBRID AND HIERARCHICAL) FOR AN INCREASING NUMBER OF PROCESSES AND PROBLEM SIZE.

Max. communication per node and per level (MByte)
#processes P #MLFMA levels #unknowns N Spatial partitioning Hybrid partitioning Hierarchical partitioning

4 4 18 432 4.82 3.00 4.74
16 5 73 728 14.36 7.21 9.83
64 6 294 912 27.11 15.54 11.65
256 7 1 179 648 48.12 31.81 11.52
1024 8 4 718 592 114.01 75.03 11.40
4096 9 18 874 368 312.70 197.53 11.30

One-dimensional partitioning along

 azimuth only (not scalable)

Two-dimensional partitioning along

both azimuth and elevation (scalable)

points to communicate

Fig. 2. One dimensional partitioning (along e.g. the azimuth) of the radiation
pattern sampling points versus a two-dimensional partitioning.

To accomplish this, we consider an increasingly larger problem
that is handled with an increasingly larger number of pro-
cesses. As a starting points, a perfectly electrically conducting
(PEC) cube discretized into 18, 432 unknowns and 4 parallel
processes are taken. Each step, both the number of unknowns
and processes are increased by a factor of four. This adds one
extra level to the MLFMA tree. For each process, the total
amount of (incoming and outgoing) communication is mea-
sured and the process that has the largest amount of commu-
nication is considered. Table I shows this communication for
the spatial, hybrid and hierarchical partitioning scheme with a
two dimensional partitioning of radiation patterns. Note that
the amount of communication was scaled by 1/ logP . Also
note that we did not implement the hierarchical scheme with
the ‘strip-wise’ layout. From Table I, one can clearly see that
the amount of communication increases rapidly when using
the spatial and hybrid scheme. For the hierarchical scheme
however, the amount of communication per process and per
level is constant. Therefore, the communication complexity of
the scheme is also O(logN). As a final remark, note that the
result with 4096 CPUs was obtained using only 1024 physical
cores. Hence, each core was oversubscribed with 4 processes.

VI. CONCLUSION

We have presented a scalable implementation of the
MLFMA for three dimensional scattering problems. A hierar-
chical scheme, augmented with a two-dimensional partitioning
of the radiation pattern sampling points was used. This scheme
leads to a parallelization where the computational, memory

and communication complexity of each individual process
does not exceed O(logN). We believe that such scheme paves
the way for extremely large-scale simulations using hundreds
if not thousands of parallel processes.

ACKNOWLEDGEMENT

The computational resources (Stevin Supercomputer Infras-
tructure) and services used in this work were provided by
Ghent University, the Hercules Foundation and the Flemish
Government department EWI. Bart Michiels was supported
by a grant from Ghent University (BOF). Ignace Bogaert
acknowledges the Research Foundation Flanders (FWO) for
a post-doctoral grant.

REFERENCES

[1] J. Fostier and F. Olyslager, “Provably scalable parallel multilevel fast
multipole algorithm,” IET Electronics Letters, vol. 44, no. 19, pp. 1111–
1113, Sep. 2008.

[2] W. C. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient
Algorithms in Computational Electromagnetics. Boston: Artech House,
2001.

[3] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by
surfaces of arbitrary shape,” IEEE Trans. Antennas Propag., vol. 30, no. 3,
pp. 409–418, 1982.

[4] S. Velamparambil and W. C. Chew, “Analysis and performance of a
distributed memory multilevel fast multipole algorithm,” IEEE Trans.
Antennas Propag., vol. 53, no. 8, pp. 2719–2727, Aug. 2005.

[5] S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: is it
that big?” IEEE Antennas Propag. Mag., vol. 45, no. 2, pp. 43–58, Apr.
2003.

[6] Ö. Ergül and L. Gürel, “Hierarchical parallelisation strategy for multilevel
fast multipole algorithm in computational electromagnetics,” Electronics
Letters, vol. 44, no. 1, pp. 3–5, Jan. 2008.

[7] ——, “A hierarchical partitioning strategy for an efficient paralleliza-
tion of the multilevel fast multipole algorithm,” IEEE Trans. Antennas
Propag., vol. 57, no. 6, pp. 1740–1750, Jun. 2009.

[8] B. Michiels, J. Fostier, J. Peeters, I. Bogaert, and D. De Zutter, “Provably
scalable parallel multilevel fast multipole algorithm in three dimensions,”
Submitted to IET Electronics Letters, 2011.

[9] J. Sarvas, “Performing interpolation and anterpolation entirely by fast
Fourier transform in the 3-D multilevel fast multipole algorithm,” SIAM
J. Numer. Anal., vol. 41, no. 6, pp. 2180–2196, 2003.


