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ABSTRACT

Fuzzy clustering techniques have been widely used in automated
image segmentation. However, since the standard fuzzy c-means
(FCM) clustering algorithm does not consider any spatial informa-
tion, it is highly sensitive to noise. In this paper, we present an exten-
sion of the FCM algorithm to overcome this drawback, by incorpo-
rating spatial neighborhood information into a new similarity mea-
sure. We consider that spatial information depends on the relative
location and features of the neighboring pixels. The performance of
the proposed algorithm is tested on synthetic and real images with
different noise levels. Experimental quantitative and qualitative seg-
mentation results show that the proposed method is effective, more
robust to noise and preserves the homogeneity of the regions better
than other FCM-based methods.

Index Terms— Image segmentation, Fuzzy clustering, Fuzzy
C-Means, Spatial information

1. INTRODUCTION

Image segmentation plays a key role in image analysis and is often
the first processing step in many image applications. The main goal
of the image segmentation is to partition an image into a set of non-
overlapping, homogeneous regions with similar attributes such as in-
tensity, depth, color, texture, etc. Since manual segmentation is time-
consuming and very often subjective and prone to errors, automated
and accurate segmentation is needed. To date, various segmentation
techniques have been developed and roughly, they can be grouped
into five main categories: thresholding, edge-based methods, region-
based methods, neural network and clustering [1, 2]. Since unsu-
pervised fuzzy clustering is one of the most commonly used meth-
ods [2,3] and has been successfully applied in fields such as astron-
omy, geology, medical and molecular imaging, it will be considered
in this paper.

The main characteristic of fuzzy segmentation methods is to al-
low pixels to belong to multiple classes with certain degree, which
is very useful in applications where uncertainty, limited spatial res-
olution and noise are present (for example satellite and medical im-
ages). Among fuzzy clustering methods, the fuzzy c-means (FCM)
algorithm [4] is the most popular one. Since the conventional FCM
algorithm classify pixels in the feature space without considering
their spatial distribution in the image, it is highly sensitive to noise
and other imaging artifacts. Many extensions of the FCM algorithm
has been proposed [5–9] to overcome above mentioned problem and
reduce errors in the segmentation process. The most common ap-
proach is to modify the FCM objective function [5,6] or a similarity
measure directly [7], by including spatial information. Ahmedet
al. [5] modified the objective function of the standard FCM algo-
rithm to allow the immediate neighbors of the pixel to influence its

labeling. On the other hand, to keep the continuity from the FCM al-
gorithm, Shenet al. [7] introduced a new similarity measure that de-
pends on spatial neighborhood information, where the degree of the
neighborhood attraction is optimized by a neural network. Beside
those modifications, there are also other methods that can be used to
enhance the FCM performance. For example, to improve the seg-
mentation performance, one can combine the pixel-wise classifica-
tion with pre-processing (noise cleaning in the original image) [8,10]
and post-processing (noise cleaning on the classified data). Xueet
al. [10] proposed an algorithm where they firstly denoise images
and then classify the pixels using the standard FCM method. All of
these methods can reduce the noise to a certain extent, but still have
some drawbacks such as increasing computational time [5], com-
plexity [5,7,9] and introducing unwanted smoothing [8,10].

In this paper, we present an improved FCM clustering algo-
rithm for image segmentation that integrates spatial neighborhood
information into a similarity measure to overcome above mentioned
problems. Spatial information depends on two neighborhood fac-
tors: the intensity similarity (feature attraction) and the relative spa-
cial position (distance attraction) between the observed element and
its neighboring elements. Experimental qualitative and quantitative
results indicate that our method successfully reduces the effect of
noise and biases the algorithm toward homogeneous clustering.

The paper is organized as follows. In Section 2, we explain the
standard FCM method and our modified FCM algorithm. Experi-
mental and comparison results are presented and discussed in Sec-
tion 3. Finally, concluding remarks are given in Section 4.

2. METHOD

2.1. FCM algorithm

The FCM algorithm, initially developed by Dunn and later general-
ized by Bezdek [4], is an iterative, unsupervised, soft classification
method. While hard classification methods (e.g. k-means) force pix-
els to belong exclusively to one class, FCM can retain much more
information about the original image by allowing pixels to belong to
multiple classes with different membership degrees.

Let X = {xj , j = 1, 2, ..., N | xj ∈ R
q} represent feature

vectors of the image withN pixels that needs to be partitioned intoC
classes, where every component of the vectorxj represents a feature
of the image at positionj andq is the dimension of the feature vector.
The FCM clustering algorithm is based on minimizing the following
objective function:

Jm =
C

∑

i=1

N
∑

j=1

u
m
ij Dij , (1)

whereuij is the membership function of the featurexj belonging
to the i-th cluster,m is the weighting exponent that controls the
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fuzziness of the resulting partition (most often is set tom = 2)
andDij = d2(xj ,vi) is the similarity measure betweenxj and the
i-th cluster centervi. The most commonly used similarity measure
is the squared Euclidean distance:

Dij = d
2(xj ,vi) = ‖xj − vi‖

2
. (2)

The objective functionJm (Eq. (1)) is minimized under the fol-
lowing constraints:

uij ∈ [0, 1],
C

∑

i=1

uij = 1 ∀j and 0 <

N
∑

j=1

uij < N ∀i , (3)

where low membership values are assigned to pixels far from the
cluster centroid, and high membership values to pixels close to the
cluster centroid. Considering the constraintsuij Eq. (3) and calculat-
ing the first derivatives ofJm with respect touij andvi and setting
them to zero, results in two following conditions for minimizingJm:

uij =

[

C
∑

k=1

(

Dij

Dkj

) 1

m−1

]−1

(4)

and

vi =

∑N

j=1 um
ij xj

∑N

j=1u
m
ij

, (i = 1, 2, ..., C) . (5)

The FCM algorithm iteratively optimizesJm, by evaluating
Eq. (4) and Eq. (5), until the following stop criterion is satisfied:

max
i∈[1,C]

‖v
(l)
i − v

(l+1)
i ‖∞ < ε , (6)

wherel is the iteration index and‖ · ‖∞ is theL∞ norm. Once a
membership valueuij for each classi is assigned to each pixelj, a
defuzzification of the fuzzy clusters{Fk}

C
k=1 into its crisp version

{Hk}
C
k=1 is done by assigning the pixel to the class with the highest

membership value as follows:

max
i∈[1,C]

(uij) = ukj =⇒ xj ∈ Hk . (7)

The main drawback of the standard FCM for image segmen-
tation is that the objective function does not take into account any
spatial information and deals with the pixels as the separate points.
Therefore, the standard FCM algorithm is sensitive to outliers and
very often those pixels are wrongly classified.

2.2. Proposed method

Since the segmentation result in FCM algorithm is significantly in-
fluenced by membership valuesuij (Eq. (1)) and considering the Eq.
(4), we can conclude that the key to a successful segmentation is the
choice of the similarity measure. Therefore, to improve the perofr-
mance of the FCM algorithm, we propose a new similarity measure
as follows:

Dij = ‖xj − vi‖
2(1 − αSij), (8)

whereSij represents the spatial neighborhood information andα ∈
[0, 1] is the parameter that controls the relative importance of the
neighborhood attraction. Ifα = 0, Dij is the squared Euclidean
distance and we have the standard FCM.

The spatial informationSij depends on the feature attractionajr

(pixel intensities) and the distance attractiondjr (relative location of
neighboring pixels), and is defined as:

Sij =

∑Nr

r=1 uirajrd
−1
jr

∑Nr

r=1 ajrd
−1
jr

, (9)

whereNr is the number of neighbors surrounding the elementxj in
a square windowΩj anduir is the membership degree of the neigh-
boring elementxr to the clusteri. If we define the neighborhood
configurationΩj as ann×n square window with the center element
xj , thenr = n2 − 1 andΩj = {xr|r = 1, 2, ..., n2 − 1}. Feature
attractionajr is defined as the absolute intensity differences between
xj and its neighborxr

ajr = |xj − xr| . (10)

The distance attractiondjr is the squared Euclidean distance be-
tween the coordinates of elementsx(pj , qj) andx(pr, qr)

djr = (pj − pr)
2 + (qj − qr)

2
. (11)

In Eq. (9) we use the reciprocal of the distanced−1
jr , because the

neighborsxr close to the center elementxj should more influence
the result, while further neighbors should be less important. Fig. 1
illustrates the neighborhood configuration used in this work.

Fig. 1. Illustration of a neighborhood configuration (marked
with colors and explained with the legend) and distance definition
(squared Euclidean distance values are shown with numbers).

The idea behind this novel definition of spatial information is:
Consider the localn×n neighborhood where the center elementxj

has large intensity differences with the closest neighboring elements
xr, which have similar intensities as the cluster centervi. If we
calculate the neighborhood attractionSij , it will be large and the
expression(1 − αSij) will be small forα 6= 0. After one iteration
of the algorithm the central elementxj will be attracted to the cluster
i. If the neighborhood attractionSij is continuously large till the end
of the algorithm, the central elementxj will be forced to belong to
the clusteri despite being dissimilar to it. Precisely, this property
biases the algorithm towards homogeneous clustering.

The outline of the proposed algorithm is:
Step1. Set the number of clustersC, degree of fuzzinessm, stop
criterionε and neighborhood size.
Step2. Initialize the centers of the clustersvi|i = 1, 2, ..., C.
Step3. Calculate the new similarity measure Eq. (8).
Step4. Calculateuij using the new similarity measure Eq. (4).
Step5. Updatevi usinguij Eq. (5).
Repeat steps 3-5 until the stop criterion Eq.(6) is satisfied.

As with all clustering algorithms, the segmentation result may
highly depend on the choice of parameter values used for initializa-
tion. Therefore, we use intensity-based thresholding [11] to reliably
initialize the cluster centers.
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Fig. 2. Comparison of the segmentation results on a synthetic image with four graylevels and three different shapes: (a) original synthetic
image; (b) the same image corrupted by zero mean Gaussian noise (SNR=16dB); (c) FCM [4]; (d) Ahmedet al. [5]; (e) Xueet al. [10]; (f)
Shenet al. [7]; (g) our proposed algorithm.

3. RESULTS

In this section, the experimental results of our algorithm to synthetic
and real images are presented. For all experiments we set the weight-
ing exponentm = 2, the stop criterionε = 0.01, the neighborhood
size3 × 3 and the parameter which controls the effect of the neigh-
borsα = 1.

To investigate the sensitivity of our proposed method to noise
and to show the quantitative comparative results with other FCM-
based methods [4, 5, 7, 10], we use the synthetic image (size128 ×
128) shown in Fig. 2a. It contains four-class pattern with three differ-
ent shapes and is corrupted by zero mean Gaussian noise (Fig. 2b),
where Signal-to-Noise Ratio (SNR) between the original and noisy
image is 16dB.

As can be seen in Fig. 2c, FCM algorithm can not classify cor-
rectly four classes, while results using Ahmedet al. [5] and Xueet
al. [10] methods have edge blurring effects (Fig. 2d and e respec-
tively). Shenet al. method succeed in classifying the data, but still
with few remaining artefacts (Fig. 2f), while our proposed algorithm
shows the best result (Fig. 2g).

In order to obtain a quantitative comparison, we plot the valida-
tion results of five methods for different noise levels in Fig. 3. The
similarity indexρ, used for the comparison and quantitative evalua-
tion, is the Dice coefficient:

ρ =
2|Ai

⋂

Bi|

|Ai| + |Bi|
, (12)

whereAi and Bi denote the set of pixels labelled intoi by the
”ground truth” and our method respectively, and|Ai| denotes the
number of elements inAi. In our experiment, the results forρ are
averaged over all four classes.

From the Fig. 3 we can clearly see that our algorithm outper-
forms other FCM-based methods and acquires the best segmentation
performance for all noise levels.

The performance of our algorithm is also demonstrated on real
images, see Fig. 4 and Fig. 5.
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Fig. 3. Validation result for different noise levels. Comparison of
FCM [4], Ahmedet al. [5], Xue et al. [10], Shenet al. [7] and our
algorithm.

4. CONCLUSION

In this work, we have presented an improved FCM algorithm for
unsupervised segmentation of noisy images. To enable robust seg-
mentation and to overcome the disadvantages of the standard FCM
algorithm, we integrated both, spatial and feature information of the
image pixels into the segmentation algorithm. The quantitative and
qualitative experimental results for simulated and real images show
a good segmentation performance, especially for noisy images, and
demonstrate an encouraging future of practical applications of the
proposed method.
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Fig. 4. Segmentation results on a satellite image: (a) original image; (b) FCM [4];(c) our algorithm.

(a) (b) (c) (d) (e) (f)

Fig. 5. Segmentation results on six real images. The first row shows the original images and the second row shows the results using our
algorithm.
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