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ABSTRACT

Traditional super-resolution methods produce a clean-tegblution image from several observed degraded lowlutgsn
images following an acquisition or degradation model. Saichodel describes how each output pixel is related to one or
more input pixels and it is called data fidelity term in theutegization framework. Additionally, prior knowledge $uc

as piecewise smoothness can be incorporated to improvetgeirestoration result. The impact of an observed pixel on
the restored pixels is thus local according to the degradatiodel and the prior knowledge. Therefore, the traditiona
methods only exploit the spatial redundancy in a local n@ighood and are therefore referred to as local methods.

Recently, non-local methods, which make use of similariietween image patches across the whole image, have
gained popularity in image restoration in general. In supsolution literature they are often referred to as exampl
based methods. In this paper, we exploit the similarity dtipas within the same scale (which is related to the class
of non-local methods) and across different resolutionescaf the same image (which is also related to the fracta¢bas
methods). For patch fusion, we employ a kernel regressigorig#hm, which yields a blurry and noisy version of the
desired high-resolution image. For the final reconstructitep, we develop a novel restoration algorithm. The joint
deconvolution/denoising algorithm is based on the spktgBnan iterations and, as prior knowledge, the algorithnhoésp
the sparsity of the image in the shearlet-transformed demiaitial results indicate an improvement over both cleasi
local and state-of-the art non-local super-resolutiorhrogs.
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1. INTRODUCTION

Since the early980s, the idea of self-similarity plays an important role in hrerhatics and physics. Fractal-based methods
assume that many natural objects possess fractalnesqairts of the image repeat themselves on an ever-dimirgjshin
scale, hence the term self-similarity. Thanks to the stalariance property of the fractal-based methods, setflarity
lends itself to image resolution enhancement applicationgractical applications, the self-similarity propeigyexploited

via a contractive affine transformation of image blocks asmdifferent scales.

Unlike fractal-based methods, non-local methods explatdimilarity of small patches at the same scale, without
rotation or photometrical corrections. Repetitive stmes could be regarded as multiple noisy observations ofdhee
structure. The concept of repetitive structures was ssfaisintroduced in the image denoising field as the noraloc
means algorithm by Buades et?al. Recently, a few single-image super-resolution techniduae® been proposed based
on this concept:®

Closely related to the non-local method, is the trainingdoh(or learning-based) approach, which restores images
based on image blocks examples that are retrieved from ideal images. Therefore, thesentqaks are also referred
to asexemplar-based methods. Codebooks with examples are built by applying ggratiation model on these ideal
(degradation-free) images. These image blocks and thest aunterparts are then used to guide the restoratioegsté
If the learning process only takes the input image into antowe refer them to aself-examples. In the application of
super-resolution, self-examples come from other scal¢iseofame image, which makes the technique on its turn related
to the fractal-based methods. This concept is also explaitsingle-image super-resolution framewofks.
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In this paper, we will adopt the idea of self-examples in eanfework and we exploit the similarity of patches within
the same scale (which is related to the class of non-locdimds) and across different resolution scales of the samgaima
(which is also related to the fractal-based methods). Ftohpusion, we employ a kernel regression algorithm, which
yields a blurry and noisy version of the desired high-resoflimage. For the final reconstruction step, we develop@ho
restoration algorithm based on the split Bregman iteratenmd, as prior knowledge, the algorithm exploits the spaosi
the image in the shearlet-transformed domain. The maierdifice between our approach and the work of Ebrahimi and
Vrscay® is that we do not limit ourselves to a single scale (which esshme as the desired magnification factor). Often
interesting scale-redundant properties do not occur aiesor particular scale. Glasner et@lbonly takes the best match
into account while we work with all similar patches. Anotlieawback is that they effectively build a Gaussian pyramid i
their framework such that some possible matches can benbig we keep a low-resolution representation for each-posi
tion of the inputimage. Also our proposed fusion and dectutian components are quite different compared to theitkwor

The paper is organized as follows: in Section 2, a short dhtetion is given on the non-local means concept. In
Section 3 our single-image super-resolution algorithnyaned. Finally, we present the experimental resultsicti®n 4
and a conclusion in Section 5.

2. NON-LOCAL MEANS CONCEPT

The motivation to develop non-local methods is to explaitikir patterns and structures in an image. This relatively n
class of denoising methods originates from the non-localmge® which we now will describe very briefly.

Consider a noisy image on a discrete grid (which is typically two or three dimensional):
v = {vli € I} @)

wherev; denotes the intensity of the pixel at positibim the image. The denoised intensityi) of a pixeli is computed
as a weighted average of all the pixels in the image, whichbeageen as a linear spatially adaptive filter:
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Let N; denote the vector of pixel intensities of a square windowizé # x B (e.g. obtained using the column-stack
ordering, i.e. the columns of each image or window are sthike one vector), centered at positiormhe weightsu; ; in
equation (2) depend on the similarity betwédpandIN;. The similarity between neighborhoods is computed by means
of amean squared difference (MsD) |N; — N;||2, i.e. the Euclidean distance. A particular choice of weightunction is
given by:
NG = N[
Wy =€ h? (3)

whereh is a constant, proportional to the noise variance. It tumstioat this weighting function appears to be the Le
Clerc robust loss function. Substantial improvements ialiggucan be obtained by replacing the weighting functiothwi
other robust loss functioris. The weightsw; ; decay at an exponential rate, which results in large weifghts smallMsp
(similar windows) and small weights for a larges D (non-similar windows). We refer the interested reader toppevious
work!%12 on ways to improve the non-local means algorithm, both in matational complexity and image quality. In
the next Section, we will generalize this concept to imagenziog and use this as a component of our single-image
super-resolution framework.

3. PROPOSED SINGLE-IMAGE SUPER-RESOLUTION FRAMEWORK

We propose a single-image super-resolution method whiplo#s repetitive structures within and across differaales.
The proposed scheme is illustrated in Figure 1 and condisiise®e consecutive steps. The following sections will dgsc
each component carefully.
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Figure 1. The proposed single-image super-resolutiondveork consisting of three consecutive steps.

3.1 Extension of non-local meansto zooming

Similar to the work of Ebrahimi and Vrsc&uve extend the non-local means to image zooming. The higblerésn (HR)
image is constructed as a weighted average of image patih@kgr to the filter in equation (2) with the difference that
k x k image patcheg(being the magnification factor) are used instead of pixels:
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wherei are the positions of the non-overlappitige & patches in their image, which correspond to each pixel in the
original input image. The grid represents a search space consisting of Gaussian prefitedesubsampled versions of
the original inputimage (referred to as the low-resolufioR) version), where all possible subsampling schemes arae take
into account. In that way, we do not discard any possible hestén contrast to the work of Glasner et*8lwhere they
explicitly use a Gaussian pyramid.

The search unit is @ x B neighborhood. Therefore, for each pixel at positiom the original input image, its
surroundingB x B neighboorhoodN; is compared with all possible neighborhodNg in the search spacé The
weighting functionw; ; is computed as:

NG = N gf?
w; ;= e h? ©)

where;j € I denotes the central position of the matched neighborhowlly;, thek x k patchv; is extracted from the
original input image as parent patch corresponding to the locatign Therefore, eaclt x &k patch in theHRr image is
obtained as a weighted average of parent patches whictspomd to the central positions of the matched neighborhoods
upon which weights are computed. The cross-scale reldtipsare illustrated in Figure 2. The non-local means atho]
described in the previous section, is actually a specia othis zooming process: in case that 1 (i.e., the same scale

as the input image), we perform non-local image denoisimbthe parent patch is simply the central pixel of the matched
neighborhood itself.

An improvement of image quality towards the non-local aldpon is to ignore the contributions from dissimilar neigh-
borhoods. Even though their weights are very small at figditsthe estimated pixel /patch values can be severelydiase
due to many small contributions. This bad influence of didainmeighborhoods can be eliminated by setting their corre
sponding weights to zero.

Our implementation involves non-local matching within ts&me scale and cross-scale matching simultaneously,
i.e. across different scales & 1,...,.5). In this way we are more likely to find similar and relevanustures than
just by searching at scale= k that corresponds to the magnification factor (as in the woEaahimi and Vrscal).
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Figure 2. The process of cross-scale matching of similaghtmirhoods (yellow) and the use of the corresponding imatghgdorange)
for the weighted average.
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Figure 3. lllustration of the non-uniformly distributednsples for different scales. The grid of the target image with magnification
factor4 of is also illustrated as the underlying grey lines.

A naive implementation of searching for similar patched lgihd to an excessive computation time. An important
improvement is the use of extension of the moving averagltey fior the MsD calculations which gives us a speed-up
of a factor hundred. However, the issue of speed was not agmmapconcern in this paper. For more details and other
improvements on computational complexity we refer the ee#nl our previous work?® 12

3.2 Patch fusion through steering kernel regression

The non-local and cross-scale matching is applied for iffescales{ = 1, ..., S) resulting in multiple image data on
different Cartesian grids. If we put all these grids on toath other, the image data is distributed in a non-uniforgn wa
as illustrated in Figure 3 for magnification factorofndS = 4. This problem also occurs in classical super-resolution
frameworks and many solutions have been proposed in literatich as non-uniform resampling, Delaunay trianguiatio
pPocsbased, shift-and-add algorithms, etc. In this paper, Wiefedus on the powerful kernel regression techniques.

We briefly describe the kernel regression method for solthegesampling problem in the ordinary least square sense
as proposed by Takeda et'al.Suppose that we have to estimate the pixel val(te) at positionx on theHRr grid. In
the surrounding neighbourhood, we have a set nbisy measurementg at irregularly sampled positions. The data
measurement model is then given by:

where f(.) is the unknowrHR image, which is also referred to as thegression function, andn; are independently and
identically distributed zero-mean noise values. In a loeaghbourhood, we can approximate the regression fungiign
by its local second order Taylor’s series expansi¥n£ 2), which is denoted by:
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whereV andH are the gradient and Hessian operators, respectively. déféaients of this polynomial are estimated by
the following weighted least-squares optimization prab(& = [ Go By B ]):

p
,3 = arg;ninz {gi — By — ,BlT(xi —x) — (x; — X)Tﬁz(xi — x)} ’ kua(x; — %), (8)
i=1

which can be solved easily using Gauss-Newton algoritfﬁfrs) = [3, is the required estimated pixel value at the position
x on theHR grid. This estimator also models edges, ridges and blolyswelt in opposite to most resampling techniques.
The kernel functiork (.) (which is typically of Gaussian or exponential form) penaé distances further away from the
grid position and its strength is controlled by the smoagtrimatrix H:

r(x; —x) = [H| 7 R(H [x, — x]). ©)

In most applications, th2 x 2 smoothing matriXH is equal tohI with h being the bandwidth parameter such that the
kernel's footprint is isotropic. Adapting the kernel’s tpant locally according to the samples can prevent overtiriog
across edges in the same way as the existing geometry-doivksn Therefore, the use of geometry-driven kernel flumgi
(with anisotropic footprints) is referred to aeering kernel regression. Such a modification requires at least two iterations
in the estimation algorithm: in the first step, the consinrcof such oriented kernels employs the first-order deieat
of the unknowrHR image, which can be estimated from the non-uniformly distied samples via equation (8) &s.

In the subsequent steps, the desired pixel valpand the refined first-order derivativé§ are estimated with the newly
modified smoothing matrices. For a more detailed discussiateering kernel regression, we refer the interestederead
to the paper of Takeda et Hl. Another important benefit of kernel regression is that we wascale the image with any
maghnification factor independent from the input of the nocal zooming.

3.3 Shearlet-based deconvolution
3.3.1 Problem formulation

The most common model for the image deconvolution problegivisn by the following matrix-vector formulation:
v=Au+n, (10)

wherev, u,n € R™ are the observed blurry data, the ideal (or hypotheticatel@sand additive noise images respectively
in a column-stack ordering (i.e. the columns of each imagestacked into one vectorA denotes the blur operator in the
matrix-vector notation.

For the deblurring application, we consider a constraingthtozation problem of the analysis-based form (also known
as thebasis pursuit problent?):
argmin J(u) s.t. H(u) =0, (11)

u
or
argmin J(u) s.t. H(u) <o, (12)
where the data fidelity is denoted B§(u) = 1||Au — v||? (which is convex, differentiable, andin H (u) = 0). J repre-
sents the sparsity prior associated with the transformmuntizh the image has a sparse representation or approgimati
It is well-known that this problem is difficult to be solvedmerically whenJ is non-differentiable. For the basis pursuit
problem in this paper, we take the convéxnorm ( - |) regularization to promote sparsity in the transformed diom

J(u) = [Sul, (13)

whereS denotes the sparsifying transform or the analysis oper@tgular choices for this transform are discrete gradient
operators (e.g. total variation), wavelet or framelet $farms (e.g. the Besov norm with respect to the Haar wavelet
transform), discrete Fourier transforms or local cosiaadforms. In this paper, we apply the discrete shearlesfivam
because the shearlet transform provides both a multirésolanalysis (such as the wavelet transform), and at thesam
time an optimally sparse image-independent representfiidmages containing edgé%.For implementation issues on
the shearlet transform with a low redundancy factor, werrsie reader to our previous wotR.



3.3.2 Split Bregman iterations

We wish to find a solutior for the constrained convex minimization problem statedl.it) ( The Lagrangian formulation
of this constrained problem leads to the following uncaistd problem:

argmin J(u) + AH (u), (14)
u
where ) is called the Lagrange multiplier or regularization pargene A common way to reach the soluti@énfor the
problem (11) is to apply continuation where we solve seqaliyithe unconstrained problems (14) by performing gratie
descent steps with varying regularization parametgrs. \; < ... < A\, — +oo. However because the regularization
parameter tends to infinity or is very large in order to enddi@atH (u) ~ 0, continuation results in (14) having numerical
instabilities for many application.

The idea of the Bregman iteration is also to transfer the ttaimed problem (11) into a sequence of unconstrained
ones (14). But instead of varying the regularization patemas in continuation methods, the Bregman iteration fixes
this parameter and varies the observation deta iQ an iterative way. Recently, a variant on Bregman iteraiwas
proposed by Goldstein and OsHérBy introducing an intermediate variabfesuch thalSu = d, the terms in the prior
J(u) and data fidelityH (u) are separable, and hence, the problem becomes more easyntzai We briefly summarize
the iterative deconvolution algorithm (for more detailssphit Bregman iterations, we refer to the paper of Goldsaeid
Oshet’), which is composed of four steps for each iteration:

A
w1 = argmin 5[ Au— vi|? + g||di — Su—by?
u
di1 = argmin|d] + 5[l — Susr — byl (15)
d

bit1 =b; +Suip1 —dips
Vig1 =Vi+ Vv — Augyg.

The first step (which solely consists &f-terms) can simply be solved using Fourier techniques. Tihatien to the
minimization with respect tal in the second step is given by for example proximity opesatdthe proximity operator
has well-known (closed-form) solutions for some modelsyefer the interested reader to the work of Combéttés a
discussion on the proximal theory. In this paper, the ragradtion functional/ is thell-norm, for which the solution is
obtained by a soft thresholding operator:

1
dis1 = ®(Suip1 —bs, =) where  d(u,q) = % max(|u| — v, 0). (16)
"

The outcomes of the third and fourth step of algorithm (1%) lba computed in a straightforward way.

4. EXPERIMENTAL RESULTS

In the first experiment, we demonstrate the potential oflsiigage super-resolution. In Figure 4, we show the
enlargement of a small window for the bicubic interpolatithe single-image super-resolution scheme of Glasner'ét al
and our own super-resolution scheme. We can clearly ndtateobth super-resolution schemes are able to recover the fin
rails in the intermediate arched windows, while that is nmggible using interpolation schemes.

As a second experiment, we create a synth#iie x 256 LR image from thel024 x 1024 pentagon standard test
image. TheHR image is first convolved with a Gaussian blur kernel befoseghbsampling. We enlarge the image
with a magnification factor ofl. Figure 5 shows the enlarged results from gaatagon image for several techniques.
We compare the images of the proposed single-image sugetidn method to those of the linear Blackman-Harris
windowed sinc interpolation, thiéerated function systems (based on fractals) upscalifgand the non-local interpolatidh.

We notice that our super-resolution method produces lestarbling artefacts compared to the sinc interpolation and
iterated function systems. The straight edges in the imegesgonstructed much better with the proposed and non-loca
method: almost all annoying staircasing effects are remholfeve compare our proposed method to the non-local method,
we can clearly notice more enriched texture at some placgsdethe left part of the image). Unfortunately, it does not
always mean that the real high frequencies are restored(eaadtruth).
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Figure 4. Towers image upscaling results(enlargement).

(a) OriginalHR image (b) LR input image
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(e) Non-local interpolatich (f) Proposed method

Figure 5. Pentagon image upscaling results énlargement).



5. CONCLUSION

In this paper we have presented a novel single-image segelution scheme that exploits non-local and cross-scale
redundancy in the image. The differentimage patches aeglfuia steering kernel regression and the output imageris tha
obtained via a novel shearlet-based deblurring algorifResults show the effectiveness of our proposed image tésolu
enhancement technique. The parameter selection is antamp@sue which has not been addressed in sufficient detail i
this paper, but is a part of our ongoing research.
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