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ABSTRACT

Traditional super-resolution methods produce a clean high-resolution image from several observed degraded low-resolution
images following an acquisition or degradation model. Sucha model describes how each output pixel is related to one or
more input pixels and it is called data fidelity term in the regularization framework. Additionally, prior knowledge such
as piecewise smoothness can be incorporated to improve the image restoration result. The impact of an observed pixel on
the restored pixels is thus local according to the degradation model and the prior knowledge. Therefore, the traditional
methods only exploit the spatial redundancy in a local neighborhood and are therefore referred to as local methods.

Recently, non-local methods, which make use of similarities between image patches across the whole image, have
gained popularity in image restoration in general. In super-resolution literature they are often referred to as exemplar-
based methods. In this paper, we exploit the similarity of patches within the same scale (which is related to the class
of non-local methods) and across different resolution scales of the same image (which is also related to the fractal-based
methods). For patch fusion, we employ a kernel regression algorithm, which yields a blurry and noisy version of the
desired high-resolution image. For the final reconstruction step, we develop a novel restoration algorithm. The joint
deconvolution/denoising algorithm is based on the split Bregman iterations and, as prior knowledge, the algorithm exploits
the sparsity of the image in the shearlet-transformed domain. Initial results indicate an improvement over both classical
local and state-of-the art non-local super-resolution methods.
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1. INTRODUCTION

Since the early1980s, the idea of self-similarity plays an important role in mathematics and physics. Fractal-based methods
assume that many natural objects possess fractalness, i.e., parts of the image repeat themselves on an ever-diminishing
scale, hence the term self-similarity. Thanks to the scale-invariance property of the fractal-based methods, self-similarity
lends itself to image resolution enhancement applications. In practical applications, the self-similarity propertyis exploited
via a contractive affine transformation of image blocks across different scales.1

Unlike fractal-based methods, non-local methods exploit the similarity of small patches at the same scale, without
rotation or photometrical corrections. Repetitive structures could be regarded as multiple noisy observations of thesame
structure. The concept of repetitive structures was successfully introduced in the image denoising field as the non-local
means algorithm by Buades et al.2, 3 Recently, a few single-image super-resolution techniqueshave been proposed based
on this concept.4–6

Closely related to the non-local method, is the training-based (or learning-based) approach, which restores images
based on image blocks orexamples that are retrieved from ideal images. Therefore, these techniques are also referred
to asexemplar-based methods. Codebooks with examples are built by applying the degradation model on these ideal
(degradation-free) images. These image blocks and their ideal counterparts are then used to guide the restoration process.7–9

If the learning process only takes the input image into account, we refer them to asself-examples. In the application of
super-resolution, self-examples come from other scales ofthe same image, which makes the technique on its turn related
to the fractal-based methods. This concept is also exploited in single-image super-resolution frameworks.6, 10
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In this paper, we will adopt the idea of self-examples in our framework and we exploit the similarity of patches within
the same scale (which is related to the class of non-local methods) and across different resolution scales of the same image
(which is also related to the fractal-based methods). For patch fusion, we employ a kernel regression algorithm, which
yields a blurry and noisy version of the desired high-resolution image. For the final reconstruction step, we develop a novel
restoration algorithm based on the split Bregman iterations and, as prior knowledge, the algorithm exploits the sparsity of
the image in the shearlet-transformed domain. The main difference between our approach and the work of Ebrahimi and
Vrscay,6 is that we do not limit ourselves to a single scale (which is the same as the desired magnification factor). Often
interesting scale-redundant properties do not occur at a single or particular scale. Glasner et al.10 only takes the best match
into account while we work with all similar patches. Anotherdrawback is that they effectively build a Gaussian pyramid in
their framework such that some possible matches can be lost,while we keep a low-resolution representation for each posi-
tion of the input image. Also our proposed fusion and deconvolution components are quite different compared to their work.

The paper is organized as follows: in Section 2, a short introduction is given on the non-local means concept. In
Section 3 our single-image super-resolution algorithm is explained. Finally, we present the experimental results in Section 4
and a conclusion in Section 5.

2. NON-LOCAL MEANS CONCEPT

The motivation to develop non-local methods is to exploit similar patterns and structures in an image. This relatively new
class of denoising methods originates from the non-local means2, 3 which we now will describe very briefly.

Consider a noisy imagev on a discrete gridI (which is typically two or three dimensional):

v = {vi|i ∈ I} (1)

wherevi denotes the intensity of the pixel at positioni in the image. The denoised intensityv̂(i) of a pixeli is computed
as a weighted average of all the pixels in the image, which canbe seen as a linear spatially adaptive filter:

v̂i =

∑

j∈I

wi,jvj

∑

j∈I

wi,j

. (2)

Let Ni denote the vector of pixel intensities of a square window of size B × B (e.g. obtained using the column-stack
ordering, i.e. the columns of each image or window are stacked into one vector), centered at positioni. The weightswi,j in
equation (2) depend on the similarity betweenNi andNj. The similarity between neighborhoods is computed by means
of amean squared difference (MSD) ‖Ni −Nj‖

2, i.e. the Euclidean distance. A particular choice of weighting function is
given by:

wi,j = e
−
‖Ni − Nj‖

2

h2 (3)

whereh is a constant, proportional to the noise variance. It turns out that this weighting function appears to be the Le
Clerc robust loss function. Substantial improvements in quality can be obtained by replacing the weighting function with
other robust loss functions.11 The weightswi,j decay at an exponential rate, which results in large weightsfor a smallMSD

(similar windows) and small weights for a largeMSD (non-similar windows). We refer the interested reader to our previous
work11, 12 on ways to improve the non-local means algorithm, both in computational complexity and image quality. In
the next Section, we will generalize this concept to image zooming and use this as a component of our single-image
super-resolution framework.

3. PROPOSED SINGLE-IMAGE SUPER-RESOLUTION FRAMEWORK

We propose a single-image super-resolution method which exploits repetitive structures within and across different scales.
The proposed scheme is illustrated in Figure 1 and consists of three consecutive steps. The following sections will discuss
each component carefully.
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Figure 1. The proposed single-image super-resolution framework consisting of three consecutive steps.

3.1 Extension of non-local means to zooming

Similar to the work of Ebrahimi and Vrscay,6 we extend the non-local means to image zooming. The high-resolution (HR)
image is constructed as a weighted average of image patches,similar to the filter in equation (2) with the difference that
k × k image patches (k being the magnification factor) are used instead of pixels:

v̂i =

∑

j∈I

wi,jvj

∑

j∈I

wi,j

, (4)

wherei are the positions of the non-overlappingk × k patches in theHR image, which correspond to each pixel in the
original input image. The gridI represents a search space consisting of Gaussian prefiltered and subsampled versions of
the original input image (referred to as the low-resolution(LR) version), where all possible subsampling schemes are taken
into account. In that way, we do not discard any possible matches in contrast to the work of Glasner et al.,10 where they
explicitly use a Gaussian pyramid.

The search unit is aB × B neighborhood. Therefore, for each pixel at positioni in the original input image, its
surroundingB × B neighboorhoodNi is compared with all possible neighborhoodsNd in the search spaceI. The
weighting functionwi,j is computed as:

wi,j = e
−
‖Ni − Nd,j‖

2

h2 (5)

wherej ∈ I denotes the central position of the matched neighborhood. Finally, thek × k patchvj is extracted from the
original input image as aparent patch corresponding to the locationj. Therefore, eachk × k patch in theHR image is
obtained as a weighted average of parent patches which correspond to the central positions of the matched neighborhoods
upon which weights are computed. The cross-scale relationships are illustrated in Figure 2. The non-local means algorithm,
described in the previous section, is actually a special case of this zooming process: in case thatk = 1 (i.e., the same scale
as the input image), we perform non-local image denoising and the parent patch is simply the central pixel of the matched
neighborhood itself.

An improvement of image quality towards the non-local algorithm is to ignore the contributions from dissimilar neigh-
borhoods. Even though their weights are very small at first sight, the estimated pixel /patch values can be severely biased
due to many small contributions. This bad influence of dissimilar neighborhoods can be eliminated by setting their corre-
sponding weights to zero.

Our implementation involves non-local matching within thesame scale and cross-scale matching simultaneously,
i.e. across different scales (s = 1, . . . , S). In this way we are more likely to find similar and relevant structures than
just by searching at scales = k that corresponds to the magnification factor (as in the work of Ebrahimi and Vrscay6).
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Figure 2. The process of cross-scale matching of similar neighborhoods (yellow) and the use of the corresponding image patch (orange)
for the weighted average.
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Figure 3. Illustration of the non-uniformly distributed samples for different scaless. The grid of the target image with magnification
factor4 of is also illustrated as the underlying grey lines.

A naive implementation of searching for similar patches will lead to an excessive computation time. An important
improvement is the use of extension of the moving averaging filter for the MSD calculations which gives us a speed-up
of a factor hundred. However, the issue of speed was not our primal concern in this paper. For more details and other
improvements on computational complexity we refer the reader to our previous work.11, 12

3.2 Patch fusion through steering kernel regression

The non-local and cross-scale matching is applied for different scales (s = 1, . . . , S) resulting in multiple image data on
different Cartesian grids. If we put all these grids on top ofeach other, the image data is distributed in a non-uniform way
as illustrated in Figure 3 for magnification factor of4 andS = 4. This problem also occurs in classical super-resolution
frameworks and many solutions have been proposed in literature such as non-uniform resampling, Delaunay triangulation,
POCS-based, shift-and-add algorithms, etc. In this paper, we will focus on the powerful kernel regression techniques.

We briefly describe the kernel regression method for solvingthe resampling problem in the ordinary least square sense
as proposed by Takeda et al.13 Suppose that we have to estimate the pixel valuef(x) at positionx on theHR grid. In
the surrounding neighbourhood, we have a set ofp noisy measurementsgi at irregularly sampled positionsxi. The data
measurement model is then given by:

gi = f(xi) + ni, i = 1, . . . , p, (6)

wheref(.) is the unknownHR image, which is also referred to as theregression function, andni are independently and
identically distributed zero-mean noise values. In a localneighbourhood, we can approximate the regression functionf(.)
by its local second order Taylor’s series expansion (N = 2), which is denoted by:

f(xi) ≈ f(x) + {∇f(x)}T (xi − x) +
1

2
(xi − x)T {Hf(x)}(xi − x)

≈ β0 + βT
1 (xi − x) + (xi − x)T β2(xi − x), (7)



where∇ andH are the gradient and Hessian operators, respectively. The coefficients of this polynomial are estimated by
the following weighted least-squares optimization problem (β̂ =

[

β0 β1 β2

]

):

β̂ = arg min
β

p
∑

i=1

[

gi − β0 − βT
1 (xi − x) − (xi − x)T β2(xi − x)

]2

kH(xi − x), (8)

which can be solved easily using Gauss-Newton algorithms.f̂(x) = β̂0 is the required estimated pixel value at the position
x on theHR grid. This estimator also models edges, ridges and blobs very well in opposite to most resampling techniques.
The kernel functionkH(.) (which is typically of Gaussian or exponential form) penalizes distances further away from the
grid position and its strength is controlled by the smoothing matrixH:

kH(xi − x) = |H|−1k(H−1 [xi − x]). (9)

In most applications, the2 × 2 smoothing matrixH is equal tohI with h being the bandwidth parameter such that the
kernel’s footprint is isotropic. Adapting the kernel’s footprint locally according to the samples can prevent oversmoothing
across edges in the same way as the existing geometry-driventools. Therefore, the use of geometry-driven kernel functions
(with anisotropic footprints) is referred to assteering kernel regression. Such a modification requires at least two iterations
in the estimation algorithm: in the first step, the construction of such oriented kernels employs the first-order derivatives
of the unknownHR image, which can be estimated from the non-uniformly distributed samples via equation (8) asβ̂1.
In the subsequent steps, the desired pixel valueβ̂0 and the refined first-order derivativesβ̂1 are estimated with the newly
modified smoothing matrices. For a more detailed discussionof steering kernel regression, we refer the interested reader
to the paper of Takeda et al.13 Another important benefit of kernel regression is that we canupscale the image with any
magnification factor independent from the input of the non-local zooming.

3.3 Shearlet-based deconvolution

3.3.1 Problem formulation

The most common model for the image deconvolution problem isgiven by the following matrix-vector formulation:

v = Au + n, (10)

wherev,u,n ∈ R
n are the observed blurry data, the ideal (or hypothetical desired) and additive noise images respectively

in a column-stack ordering (i.e. the columns of each image are stacked into one vector).A denotes the blur operator in the
matrix-vector notation.

For the deblurring application, we consider a constrained optimization problem of the analysis-based form (also known
as thebasis pursuit problem14):

argmin
u

J(u) s.t. H(u) = 0, (11)

or
argmin

u

J(u) s.t. H(u) < σ, (12)

where the data fidelity is denoted byH(u) = 1

2
‖Au−v‖2 (which is convex, differentiable, andmin H(u) = 0). J repre-

sents the sparsity prior associated with the transform under which the image has a sparse representation or approximation.
It is well-known that this problem is difficult to be solved numerically whenJ is non-differentiable. For the basis pursuit
problem in this paper, we take the convexl1-norm (| · |) regularization to promote sparsity in the transformed domain:

J(u) = |Su|, (13)

whereS denotes the sparsifying transform or the analysis operator. Popular choices for this transform are discrete gradient
operators (e.g. total variation), wavelet or framelet transforms (e.g. the Besov norm with respect to the Haar wavelet
transform), discrete Fourier transforms or local cosine transforms. In this paper, we apply the discrete shearlet transform
because the shearlet transform provides both a multiresolution analysis (such as the wavelet transform), and at the same
time an optimally sparse image-independent representation for images containing edges.15 For implementation issues on
the shearlet transform with a low redundancy factor, we refer the reader to our previous work.16



3.3.2 Split Bregman iterations

We wish to find a solution̂u for the constrained convex minimization problem stated in (11). The Lagrangian formulation
of this constrained problem leads to the following unconstrained problem:

argmin
u

J(u) + λH(u), (14)

whereλ is called the Lagrange multiplier or regularization parameter. A common way to reach the solution̂u for the
problem (11) is to apply continuation where we solve sequentially the unconstrained problems (14) by performing gradient
descent steps with varying regularization parametersλ0 < λ1 < . . . < λn → +∞. However because the regularization
parameter tends to infinity or is very large in order to enforce thatH(u) ≈ 0, continuation results in (14) having numerical
instabilities for many applications.17

The idea of the Bregman iteration is also to transfer the constrained problem (11) into a sequence of unconstrained
ones (14). But instead of varying the regularization parameter as in continuation methods, the Bregman iteration fixes
this parameter and varies the observation data (vi) in an iterative way. Recently, a variant on Bregman iterations was
proposed by Goldstein and Osher.17 By introducing an intermediate variabled such thatSu = d, the terms in the prior
J(u) and data fidelityH(u) are separable, and hence, the problem becomes more easy to minimize. We briefly summarize
the iterative deconvolution algorithm (for more details onsplit Bregman iterations, we refer to the paper of Goldsteinand
Osher17), which is composed of four steps for each iteration:



























ui+1 = arg min
u

λ

2
‖Au− vi‖

2 +
µ

2
‖di − Su− bi‖

2

di+1 = argmin
d

|d| +
µ

2
‖d− Sui+1 − bi‖

2

bi+1 = bi + Sui+1 − di+1

vi+1 = vi + v − Aui+1.

(15)

The first step (which solely consists ofl2-terms) can simply be solved using Fourier techniques. The solution to the
minimization with respect tod in the second step is given by for example proximity operators. The proximity operator
has well-known (closed-form) solutions for some models, werefer the interested reader to the work of Combettes18 for a
discussion on the proximal theory. In this paper, the regularization functionalJ is thel1-norm, for which the solution is
obtained by a soft thresholding operator:

di+1 = Φ(Sui+1 − bi,
1

µ
) where Φ(u, γ) =

u

|u|
max(|u| − γ, 0). (16)

The outcomes of the third and fourth step of algorithm (15) can be computed in a straightforward way.

4. EXPERIMENTAL RESULTS

In the first experiment, we demonstrate the potential of single-image super-resolution. In Figure 4, we show the2×
enlargement of a small window for the bicubic interpolation, the single-image super-resolution scheme of Glasner et al.10

and our own super-resolution scheme. We can clearly notice that both super-resolution schemes are able to recover the fine
rails in the intermediate arched windows, while that is not possible using interpolation schemes.

As a second experiment, we create a synthetic256 × 256 LR image from the1024 × 1024 pentagon standard test
image. TheHR image is first convolved with a Gaussian blur kernel before the subsampling. We enlarge theLR image
with a magnification factor of4. Figure 5 shows the enlarged results from thepentagon image for several techniques.
We compare the images of the proposed single-image super-resolution method to those of the linear Blackman-Harris
windowed sinc interpolation, theiterated function systems (based on fractals) upscaling19 and the non-local interpolation.4

We notice that our super-resolution method produces less disturbing artefacts compared to the sinc interpolation and
iterated function systems. The straight edges in the image are reconstructed much better with the proposed and non-local
method: almost all annoying staircasing effects are removed. If we compare our proposed method to the non-local method,
we can clearly notice more enriched texture at some places (e.g. at the left part of the image). Unfortunately, it does not
always mean that the real high frequencies are restored (seegroundtruth).



(a) Input image (rescaled) (b) Bicubic interpolation (c) Super-resolution10 (d) Proposed method

Figure 4. Towers image upscaling results (2× enlargement).

(a) OriginalHR image (b) LR input image

(c) Sinc interpolation (d) Iterated function systems (self-similarity)19

(e) Non-local interpolation4 (f) Proposed method

Figure 5. Pentagon image upscaling results (4× enlargement).



5. CONCLUSION

In this paper we have presented a novel single-image super-resolution scheme that exploits non-local and cross-scale
redundancy in the image. The different image patches are fused via steering kernel regression and the output image is than
obtained via a novel shearlet-based deblurring algorithm.Results show the effectiveness of our proposed image resolution
enhancement technique. The parameter selection is an important issue which has not been addressed in sufficient detail in
this paper, but is a part of our ongoing research.
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[16] Goossens, B., Aelterman, J., Luong, H., Pižurica, A.,and Philips, W., “Efficient design of a low redundant discrete
shearlet transform,” in [Proceedings of International Workshop on Local and Non-Local Approximation in Image
Processing (LNLA) ], (2009).

[17] Goldstein, T. and Osher, S., “The split Bregman method for L1 regularized problems,” Tech. Rep. 08-29, Computa-
tional and Applied Math, University of California (2008).

[18] Combettes, P. and Pesquet, J.-C., “A Douglas-Rachfordsplitting approach to nonsmooth convex variational signal
recovery,”IEEE Journal of Selected Topics in Signal Processing 1, 1–12 (Dec. 2007).

[19] Gharavi-Alkhansari, M., Denardo, R., Tenda, Y., and Huang, T., “Resolution enhancement of images using fractal
coding,”Proceedings of SPIE, The International Society for Optical Engineering 3024(2), 1089–1100 (1997).


