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Abstract

Intelligibility is a primary measure for the assessment of patho-
logical speech. Traditionally, it is measured using a perceptual
test, which is by definition subjective in nature. Consequently,
there is a great interest in reliable, automatic and therefore ob-
jective methods. This paper presents such a method that incor-
porates an automatic speech recognizer (ASR) for producing
features that characterize the pronunciations of a speaker and
an intelligibility prediction model (IPM) for converting these
features into an intelligibility score. High correlations (about
0.90) between objective and perceptual scores are obtained with
a system comprising two different speech recognizers: one with
traditional acoustic models relating acoustical observations to
triphone states and one using phonological features as an inter-
mediate layer between the acoustical observations and the pho-
netic states.

Index Terms: objective intelligibility assessment, pathological
speech, phonological features, phonemic features

1. Introduction

Intelligibility is defined as the accuracy with which a listener
is able to decode the acoustic signal of a speaker [1]. It is
a highly relevant measure for the assessment of pathological
speech. Traditionally, clinicians evaluate a patient’s intelligi-
bility by means of a perceptual test like [2, 3]. Such a test is
tedious and partly subjective. This calls for the development of
automatic assessment methods. Recent work [4, 5] has already
demonstrated high correlations between the word accuracy of
an automatic speech recognizer (ASR) trained on normal speech
and a subjective impression of intelligibility (a mean opinion of
several human judges).

In this paper, a novel method based on phonemic and
phonological feature scores, derived from a forced alignment
of the speech with the target text, is presented. It has permitted
us to create several automatic intelligibility prediction systems
and to measure the agreement between the objective intelligi-
bility scores they produce and the perceptual scores that were
available in a pathological speech corpus.

If phonological feature scores can predict intelligibility,
what will be proven here, they can most probably also be a basis
for more detailed predictions. This would give the advantage
that the amount of intelligibility loss due to specific articula-
tory phenomena like e.g. the horizontal tongue position, the lip
movements, etc. can be predicted. This articulatory information
would be of immediate relevance to the clinician who wants to
design an appropriate therapy and monitor its effectiveness.

2. Subjective evaluation and database
The subjective assessment against which we will compare
our objective methods is the Dutch Intelligibility Assessment
(DIA) [2], which was constructed to measure intelligibility at
the phoneme level. Every speaker reads 50 consonant-vowel-
consonant words which are divided in 3 subtests for testing ini-
tial consonants (19 words), final consonants (15 words) and me-
dial vowels and diphthongs of Dutch (16 words) respectively.
To avoid that the listener (a clinician) gets too familiar with the
test items, there are 25 variants of each subtest and each variant
contains existing words as well as pronounceable pseudowords.
For each test item, the listener must fill in the missing phoneme
in a word frame such as “.it” (in case the initial consonant is the
target phoneme). Indicating an omission is also allowed. The
perceptual intelligibility score is calculated as the percentage of
correctly identified phonemes. Previous research [2, 6] showed
that the intelligibility scores derived from the DIA are highly
reliable (an intraclass correlation of 0.93 and an interclass cor-
relation of 0.91 [6]).

We have collected a database of 10550 consonant-vowel-
consonant word recordings (50 words x 211 speakers) produced
by 51 control speakers, 60 dysarthric speakers, 12 children with
cleft, 42 persons with pathological speech secondary to hearing
impairment, 37 laryngectomized speakers, 7 persons diagnosed
with dysphonia and 2 persons with a glossectomy. The subjec-
tive phoneme intelligibilities of the pathological speakers vary
between 28 and 100 percent with a mean of 78.7 percent, while
those of the control speakers range from 84 to 100 percent with
a mean of 93.3 percent.

3. Objective intelligibility assessment
Opposed to the approach advocated in [4, 5], we propose a
two-stage system with an ASR producing a set of speaker fea-
tures and an intelligibility prediction model (IPM) transform-
ing these features into an intelligibility score. The advantage of
this approach is that the ASR can be trained on normal speech
whereas the IPM can be trained on pathological speech. We
tested two ASRs and different sets of speaker features. Both
ASRs use Mel-Frequency-Cepstral Coefficients (MFCC) [7] as
inputs (frame size = 30ms, hop size = 10ms, 13 features per
frame).

3.1. Speech recognizers

The first system (ASR-ESAT) we consider is the main-stream
state-of-the-art ASR [8] developed at ESAT. It is a Semi-
Continuous HMM system comprising a large set of state-
independent Gaussians and acoustic triphone models. A global
phonetic decision tree defines a large number of tied states.

The second system (ASR-ELIS) is developed in our own
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department. In a first stage, a neural network based phonologi-
cal feature extractor [9, 10] extracts 24 binary phonological fea-
tures concerning voicing, vowel height, manner of articulation,
place of articulation etc. per frame. These features are then sup-
plied to an ASR engine with context-independent phone models
(some phonemes appear as multiple-phone units). This is ac-
ceptable because coarticulations can be handled by the phono-
logical feature extractor which is ‘seeing’ long (110 ms) time
intervals.

3.2. Feature extraction

Since we had access to the global scores of the recognizers as
well as to the frame-level scores of the acoustic models they
contain, we had the opportunity to let the ASRs produce differ-
ent types of speaker features, which we briefly describe here.

3.2.1. Word Accuracy (WA)

The simplest speaker feature one can derive from the ASR is
the word accuracy (WA), defined as the percentage of correctly
recognized words. A word is considered correctly recognized if
the target word obtains the highest score. By computing a WA
for the full test and for the three subtests A, B and C one obtains
a set of four WA-features per ASR. This kind of features is also
used in [4].

3.2.2. Log-Likelihood Ratio (LLR)

As the WA is based on a binary decision (word correctly or not
correctly recognized), it might be useful to try out a continuous
measure to circumvent the effects of discretization. This is done
by using the LLR measure. This measure is defined as the log
likelihood of the target (correct) word minus that of the best
other word. Here too, we can retrieve four LLR-features per
ASR.

3.2.3. Phonemic Features (PMF)

It is possible to obtain a richer speaker characterization by ana-
lyzing the phonetic segmentation made by the ASR based on the
target word. Note that since only the target word is considered,
the ASR is actually used in a forced alignment mode. There
is evidence [11] that measures derived from such an alignment
tend to correlate with intelligibility.

If the aligner assigns frame t with acoustic representation
Xt to an acoustic model state st, the proposed method first
computes the posterior probability P (st|Xt) for that frame.
In ASR-ESAT, this requires the conversion of likelihoods
f(Xt|st) to posteriors according to

P (st|Xt) =
p(Xt|st)P (st)

p(Xt)
(1)

p(Xt) =
X
s∈S

p(X|st)P (st) (2)

with S being the set of eligible states and P (st) the prior prob-
ability of visiting state st. In ASR-ELIS, posterior probabilities
P (k, A|Xt) of phonological feature k being equal to A (0 or 1)
[9] are converted to P (st|Xt) according to

P (st|Xt) =

2
4 Y

k,Ack(st)=1

P (k, 1|Xt)

3
5

1
N1

(3)

with Ack(st) representing the canonical value of phonological
feature k of state st and N1 the number of canonical values

that are 1 for this state. Note that ASR-ELIS uses single-state
models.

A phonemic feature PMF(f ) for phoneme/phone (depend-
ing on the ASR) f can then be derived by taking the mean over
the posterior probabilities P (st|Xt) of all frames Xt assigned
to any state st belonging to the phoneme or phone f .

Repeating this process for every phoneme/phone gives rise
to 40 PMFs for ASR-ESAT and 55 PMFs for ASR-ELIS.

3.2.4. Phonological Features (PLF)

Using ASR-ELIS, it is also possible to compute a set of phono-
logical features PLF(k, A), expressing how well the acoustic
observations predict that phonological feature k has a value A
(0 or 1) in frames where it is supposed to be equal to A. Those
PLFs are derived from the posterior probabilities P (k, A|Xt)
of phonological feature k being equal to A in 3 steps:

1. Consider all frames Xt assigned to the state modeling
phone f and compute the mean P (k, A|Xt) as a pos-
terior for k having a value A over all occurrences of f ,
denoted as P (k, A|f).

2. Repeat this for all phones f .

3. Now calculate the PLF(k,A) as the mean of the posteri-
ors P (k, A|f) over all phones f whose Ack = A.

Since different speakers have spoken different material (subtest
variants) and since our PLF features are based on all phonemes
appearing in that material (and not only on the phoneme tested
by the perceptual DIA), a simple averaging of scores over
frames would have implied that the impact of a phone (e.g. /i/)
on the value of a phonological feature (e.g. front) would be vari-
able. By averaging the posteriors P (k, A|f) per phone first, we
give equal weights to every phone contributing to PLF(k,A).

In case of ASR-ESAT, one cannot compute a PLF with the
same interpretation but one can nevertheless introduce the no-
tion of phonological features by adapting the procedure that de-
livered the PMFs. This is done in 3 steps:

1. Split the plosives into a part containing the closure and
one containing the burst. As ASR-ESAT defines three
states per phoneme, we can assign the first state to the
closure and the other two states to the burst.

2. Compute the PMFs of this new phone set

3. Now calculate the PLF(k,A) as the mean of the PMF(f )
over all phones f whose Ack = A.

Of course, constructing the PLF-ESAT is a bit artificial and
gives us only an impression of the true phonological features.
Nevertheless, with these features we hope to find an answer to
the question whether an IPM based on PMFs and PLFs coming
from ASR-ESAT can compete with an IPM based on PMFs and
PLFs coming from two different recognizers.

Repeating the PLF computation for all phonological fea-
tures and for two values A = 1 and A = 0 of each feature
results in 48 PLFs per ASR.

3.3. Intelligibility Prediction Model (IPM)

The final step is the conversion of the speaker features into an
objective intelligibility score for the speaker. For that purpose
we use a regression model that is trained on pathological as well
as normal speakers.



3.3.1. Model choice

A variety of statistical learners is available for optimizing re-
gression problems. However, given the fact that the number of
features is high compared to the number of speakers, a linear
regression model in terms of selected features, possibly in com-
bination with some ad hoc transformation of these features, is
about the most complex model we can construct.

3.3.2. Model training

In this study we investigate linear regression models that were
based on different subsets selected from the available feature
sets WA, LLR, PMF and PLF. A five-fold cross-validation (CV)
method is used to identify the feature subset yielding the best
performance. The Pearson correlation coefficient (PCC) be-
tween the computed and the perceptual intelligibilities is used
as the performance measure. To restrict the bias of the CV-
approach as much as possible, we have forced the feature selec-
tion process to select the same feature subset in all 5 folds of
one CV-trial.

Due to the large number of features, it would be impractical
to use an exhaustive search for the best subset. Instead, sub-
optimal sequential feature selection procedures such as adding
or removing 1 feature at the time are used as simple alterna-
tives. Adding or removing more than 2 or 3 features at the time
yielded very similar performances.

4. Results and discussion
4.1. General results

In this section we present the performances of several intelligi-
bility prediction models which were built by already confining
the feature set from which they can select the features they need.

By only considering the WA features, we obtained PCCs
which were low (0.361 for WA-ELIS, only global WA selected)
to moderate (0.724 for WA-ESAT, global WA and WA of list
A selected). Using the LLR as an alternative to WA we hoped
to circumvent the effects of discretization. Unfortunately, the
use of this measure leads to PCCs of 0.350 for LLR-ELIS (only
global LLR selected) and 0.593 for LLR-ESAT (global LLR
and that of list B selected).

The PCCs obtained with models having access to the
phonemic or phonological feature sets of one of the ASRs are
listed in Table 1. All feature sets yield a very similar perfor-
mance, be it that the ELIS-based IPMs are more complex.

In the hope to further improve the performance, different
combinations of two of these four feature sets were examined.
Combining the two feature sets emerging from the same ASR
was not expected to yield a very significant improvement since
the two feature sets are then derived from the same underlying
acoustic models. This is confirmed by the results: combining
the ESAT feature sets leads to a PCC of 0.795 (16 selected fea-
tures), combining the ELIS features sets yields a PCC of 0.815
(45 selected features). More interesting would be to combine

Table 1: Pearson correlation coefficients (PCC) for different
phonemic and phonological feature sets. N denotes the num-
ber of selected features that yielded these results.

PMF-ESAT PMF-ELIS PLF-ESAT PLF-ELIS
PCC 0.798 0.737 0.753 0.779
N 15 27 12 23
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Figure 1: Computed versus perceptual intelligibility score when
combining PMF-ESAT and PLF-ELIS.

the PMF-ESAT and the PLF-ELIS features since they emerge
from systems comprising different acoustic models and differ-
ent alignment strategies. This combination leads to a PCC of
0.858 on the basis of 34 selected features. The scatter plot of
the subjective and objective intelligibility scores for this system
is shown in Figure 1.

We also created an IPM that could choose its features from
the full set of 207 features. This model yielded a PCC of 0.866,
which is not significantly better than the 0.858 we got already.

4.2. Pathology-specific intelligibility prediction models

If a clinician is mainly working with one pathology, he is prob-
ably more interested in an intelligibility prediction model that
is specialized for that pathology. This can be done by selecting
the input features yielding the highest PCC between the sub-
jective and objective scores of the test speakers sharing that
pathology. We have trained such models for the pathologies
dysarthria (DYS), laryngectomy (LARYNX) and hearing im-
pairment (HEAR). The PCCs measured for these models are
listed in Table 2. The scatter plot of the computed versus
perceptual intelligibility scores emerging from the dysarthria
model is shown in Figure 2. The dysarthric speakers are close
to the diagonal, but the dispersion of other speakers is clearly
increased. The PCCs we obtain compare favorably to the PCCs
of 0.88 (for tracheo-oesaphagal speakers) and 0.92 (for speakers
with cancer of the oral cavity) reported by Riedhammer et al [4].
Obviously, a direct comparison is difficult to make since in [4]
the perceptual intelligibility was just an impression of intelli-
gibility (rated on a 7-point Likert-scale), the populations were
smaller than in our study and the intelligibility prediction was
evaluated using a leave-one-out paradigm. According to [12],
leave-one out produces a higher variance and a higher positive

Table 2: Pearson correlation coefficients (PCC) for pathology
specific IPM (labels are explained in text). N denotes the num-
ber of selected features that yielded these result.

DYS LARYNX HEAR
PCC 0.943 0.907 0.972
N 34 22 46
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Figure 2: Computed versus perceptual intelligibility scores
emerging from the PMF+PLF intelligibility model of dysarthric
speakers. The circles denote the dysarthric speakers, the
crosses denote other speakers.

performance bias than a five-fold CV test.
The largest deviations between computed and subjective in-

telligibilities are observed for the speakers with a low intelligi-
bility rate. This is a logical consequence of the fact that we only
have scarce data in that area. We were not able to record many
of such speakers because they often have other disabilities as
well and are therefore incapable of performing the test.

4.3. Most relevant features

In order to investigate the clinical plausibility of our approach
we have also identified the features with the largest impact on
the speech intelligibility. Just selecting the features that con-
tributed to our best IPM would be too restrictive since there
are a manifold of alternative feature sets of the same size that
would have yielded a very comparable performance. Instead,
we selected all feature sequences of length 5 which led to a
PCC > 0.68 and we recorded the 15 features appearing most
frequently. They are listed in descending order of frequency in
Table 3.

To find out if the selected features correspond to important
characteristics that have already been described in the litera-
ture, an in-depth study of this matter was conducted [13]. It
confirmed that the features selected by our model can indeed
be linked to characteristics that have been previously associated
with pathological speech.

5. Conclusions and future work
In this paper, a first approach toward an automatic assessment
of the intelligibility and articulation deficiency of pathological
speakers is described. It is shown that alignment-based methods

Table 3: Most frequently selected features in decreasing order
of frequency (from top left to bottom right).

/i/ /s/ /z/ /2/ /O/
/l/ /j/ Not lateral Lateral /A/
/x/ /A+/ Mid /o/ Low

combining phonemic and phonological features yield a correla-
tion between the subjective (human) scores and the objective
(computed) scores of about 0.86 for a general model and over
0.90 for a pathology specific model. The correlations for specifc
pathologies compete with the interrater agreements measured
for perceptual intelligibility assessment. The fact that intelligi-
bility is well predicted by the computed features opens up new
possibilities for a more profound articulatory assessment and
possibly a better therapy for patients with speech disorders.
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