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I. INTRODUCTION

The evolution of displays and photonic com-
ponents during the last decades is beyond doubt
spectacular. To continue further improvement
to obtain even better, thinner, lighter etc. prod-
ucts in future, it is essential to have a good
understanding of the light propagation in these
advanced structures. Various simulation meth-
ods have been developed for this purpose, rang-
ing from simple methods used since the 1900s
to very advanced techniques that simulate the
time evolution of the electromagnetic fields.
Our goal is to model the light propagation in
special anisotropic materials as e.g. liquid crys-
tals, which play a crucial role in today’s om-
nipresent liquid crystal displays (LCDs). We
present and illustrate the use of a fast and ef-
ficient finite element method (FEM) for these
materials which describes the light propagation
through a structure in very small steps.

II. FEM IN ELECTROMAGNETICS

The finite element method is well-known in
engineering because of its flexibility to model
problems in arbitrary geometries. In the tra-
ditional FEM, the structure of interest is dis-
cretized to a mesh of small triangles, as illus-
trated in Fig.1, and the problem is formulated
in terms of the unknown function φ at the el-
ement nodes. Within the elements, the func-
tion φ is approximated using appropriate in-
terpolation of the nodal values. In our study
of light propagation, φ represents the electrical
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Figure 1. Discretization of a waveguide structure
(left) and a vectorial finite element (right).

field of the considered light beam that propa-
gates in e.g. the pixel of a display. To be able
to describe the vectorial nature of the light field,
dedicated vector elements ([1], [2]) as shown
in Fig.1 are used in which the nodes and edges
represent the longitudinal resp. transversal field
components. With these elements, the electri-
cal field [Ex, Ey, Ez] of the propagating beam
is represented on the mesh by a set {X} of
nodal and edge values.

III. THE BEAM PROPAGATION METHOD

In the two-dimensional beam propagation
method (BPM) that we use to study light
propagation in structures that are invariant in
the propagation direction z of the light (e.g.
waveguides), the light is sequentially propa-
gated through the structure in small steps dz.
From Maxwell’s equations, the field profiles
{X}i and {X}i+1 at places z0 resp. z0 + dz
can be related to each other in a recurrence
scheme ([3]):

[A]{X}i+1 = [B]{X}i, (1)

where [A] and [B] are system matrices that
include the material properties in each mesh
point. Once the initial light beam {X}0 and
the matrices [A] and [B] are calculated, the
light can be propagated through the structure
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by applying Eqn.1. This BPM scheme is very
fast and efficient once [A] (and its inverse) and
[B] are calculated, as these matrices remain the
same for every iteration. Analytical expres-
sions exist in literature ([3]) for evaluation of
[A] and [B], but their validity is limited to spe-
cial cases which can not be used to simulate the
light propagation in e.g. liquid crystal displays.
Therefore, we have developed more general ex-
pressions for [A] and [B] in order to apply this
powerful method also to these devices.

IV. BPM EXAMPLE IN ANISOTROPIC MEDIA

To illustrate our method, we consider the
propagation of a laser beam with a 4µm spot
size and wavelength λ = 1µm in an uniaxial
material. In such a material, the refractive in-
dices are not the same for different directions
in the material. For example, the refractive in-
dex nx = 1.5 for the Ex component of the
light is for the material that we consider dif-
ferent from the index ny = 1.6 for the Ey

component. The electrical field of the origi-
nal beam is parallel to the +45◦ bisector of the
X and Y material axes, as shown in Fig.2(a).
The gaussian intensity profile of the Ex and
Ey field components (in phase for the original
+45◦ polarization) is shown in Figs.2(b)-(c).
The propagation of the original beam through
the medium was simulated with our method
over 5µm with a propagation step dz = 0.1µm.
Because of the different refractive indices for
Ex and Ey , these field components will prop-
agate through the medium at a different veloc-
ity c/nx resp. c/ny (with c the light speed in
vacuum). This will result in a delay between
Ex and Ey , which will make them opposite in
phase after propagation over a certain distance
d = λ/(2(ny−nx)) = 5µm. This will change
the direction of the electrical field of the light
to a linear −45◦ state compared to the original
+45◦ direction. This is correctly simulated us-
ing BPM, as can be seen in Fig.2: the electrical
field after propagation over 5µm shown in (d)
is a rotated version over 90◦ of the original po-
larization in (a). TheEx andEy components in
(e)-(f) are spread out a little compared to the in-

Figure 2. Simulated light beam at z = 0µm (top)
and 5µm (bottom): quiver plot of the electrical
field (left) and intensity profiles of the Ex and
Ey field components (middle resp. right).

tensity profiles shown in (b)-(c) which is due to
light diffraction: a light beam spreads out upon
propagation.

V. CONCLUSIONS

To facilitate further optimization of displays
and photonic devices, the study of the light
propagation in these devices has become very
important. The beam propagation method is a
rigorous method for this purpose which is also
efficient from a computational point of view.
As illustrated, an extended two-dimensional fi-
nite element implementation of this method
is also valid for general anisotropic materials.
Therefore, the beam propagation method be-
comes applicable to study the light propagation
in e.g. liquid crystal devices in future work.
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