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Abstract—This paper describes a method for video-based
motion path detection which is applied in the creation of an
interactive artwork. The proposed algorithm, based on the
Hough transform, detects parametric motion trajectories in real-
time (10 fps). In order to detect people’s motion under non-
static background object occlusion we have also developed a
video segmentation technique. The proposed interaction system
adopts top-down camera view to extract spatiotemporal motion
trajectories and discern predefined patterns of movement thus
enabling the creation of new artistic choreographies. We present
test results that illustrate the effectiveness of our method and
discuss the practical applicability of our approach in other
domains.

Index Terms—motion path detection; real-time video process-
ing; video segmentation

I. INTRODUCTION

Contemporary art is often influenced and augmented by

technology. In this sense, the expressive power offered by

different multimedia technologies is particularly useful in the

creation of interactive art. An overview of interactive artistry,

employing a variety of multimedia methods, is given by Jaimes

et al. [1], [2], and Tinapple and Ingalls [3].

This paper deals with the analysis of the motion of people

from video which has been applied in the realization of an

interaction artwork. Figure 1 shows a diagram of the artistic

setup. The conceptual idea of the artist in this kinetic instal-

lation is to translate urban data, weather conditions, and the

motion of visitors into a dramatic choreography. To observe

and influence the creation of emerging and disappearing visual

and acoustic patterns, visitors can enter under a synthetic cloud

formed by the swirling and circling movement of a large

transparent sail. We analyze the video sequences obtained from

static cameras placed in top-down view. This enables us a view

of the scene (without having visitors occluding each other)

from which we can extract motion trajectories. The extracted

motion trajectories are used to infer parametric patterns of

Fig. 1: A diagram of the interactive art exhibition system.

observers’ movements. Detected motion patterns are utilized

in the creation of new sail choreographies in real-time.

The remainder of this paper is organized as follows. Sec-

tion II is devoted to related work in motion trajectory analysis

and shape detection. In Section III, we propose a novel algo-

rithm for observers’ motion path detection. Next, Section IV

gives an overview of the architecture of the artistic system.

The obtained results are described in Section V. Finally, we

conclude this paper in Section VI and discuss other possible

applications of the proposed method.

II. RELATED WORK

Motion trajectories are features of interest in many auto-

matic video surveillance applications. Detection of motion

paths is of particular importance in anomalous behavior iden-

tification, where the tracked objects usually follow a recurrent

movement path.



Makris and Ellis [4] model frequently used pedestrian paths

from video footage of outdoor scenes for the purpose of

long period logging of movement patterns, recognition of

atypical movement, and probabilistic prediction of the route

chosen by a pedestrian entering the scene. Here, trajectories

are represented as resampled 2D points and routes of typical

movement are detected by merging trajectories that satisfy a

predefined minimal distance.

Sillito and Fisher [5] represent the problem of identifying

anomalous behavior in pedestrian motion trajectories as a one-

class learning problem. Each spatiotemporal motion trajectory

is encoded as a vector of the control points (obtained by least-

squares fitting) of a uniform cubic B-spline curve approxima-

tion of the original trajectory. A one-class classifier [6], based

on Gaussian mixture model is trained on normal examples

of motion trajectories. When a low likelihood example is

encountered, approval of a human operator is required in order

to incorporate it into the existing model or to label it as

anomalous motion.

Typical pedestrian motion patterns are described by a prob-

abilistic model in the work of Ellis et al. [7]. They build a

Gaussian Process model for each group of training trajectories,

clustered by start point, by inferring the model parameters

from the observed data. The built model can then be used to

give a future estimate of a target’s position.

In the method of Ricci et al. [8] for learning common pedes-

trian trajectories, motion paths are represented by flow vectors,

which consist of the position and velocity of the targets at a

given time. A grouping of the aforementioned representation

of trajectories is then performed by using a Kernel K-means

with a Dynamic Time Warping kernel [9]. Kernel Canonical

Correlation Analysis [10] is used on a training data set to learn

a mapping function between positions of clustered trajectories

and corresponding instantaneous velocity vectors. Finally, the

learned mapping function is utilized to predict the velocity

vector for a novel input trajectory position.

Apart from motion trajectory analysis, another important

aspect related to our work is detection and recognition of

shapes from images. The detection of shapes from image data

is one of the basic problems in computer vision, as it relates

to many image and video analysis applications.

In the work of Su et al. [11] detection of predetermined

shapes in 2D point clouds, extracted from images, is formu-

lated as a generalized likelihood ratio test. The points from

the point cloud belonging to the predefined shape are assumed

to be noisy versions of the realization of a one-dimensional

Poisson process, while for the clutter points a two-dimensional

Poisson process model is used. The ratio test is formed from

the likelihood of a given point cloud being only clutter to the

likelihood of the same point cloud being associated with a

given shape class. The parameters for both of the likelihood

functions are obtained using maximum likelihood estimation.

A shape detection method for images can be found in the

work of Garlipp and Müller [12]. Their approach is based

on rotational difference kernel estimators for detecting linear

edges and circles.

III. MOTION PATH DETECTION

For the purpose of creating an interactive art experience, we

are interested in the detection of visitors’ motion patterns. In

particular we would like to be able to detect when a visitor’s

motion trajectory forms a parametrized shape, i.e., a line or

a circle in the scene. There are two main differences of our

work compared to the approaches described in Section II. First,

in typical motion path analysis applications, the trajectories

taken by people can be of arbitrary form, however, the form of

the frequent, or usual, trajectories is constrained by the scene

infrastructure (such as sidewalks, crossings, passages etc).

Here we are interested in detecting patterns of movement, such

as lines and circles, that are frequently occuring in the motion

of the visitors in an unconstrained scene instead of arbitrary

motion trajectories. Second, unlike the methods discussed in

Section II, shape detection in motion trajectory data should

meet real-time video processing requirements for speed and

be robust to missing information.

A block diagram of our approach is given in Figure 2. First

we perform detection and segmentation on the frames of the

video sequence in order to segment the sail in the video of

the scene. Then we extract motion trajectories. Finally, the

extracted paths are used to determine if some visitor has

traversed the scene with a regular motion trajectory. In the

next subsections we describe the components of the system in

more detail.

Fig. 2: Block diagram of the proposed system.

A. Sail Segmentation and Motion Trajectory Extraction

The presence of the sail in the field of view poses a

challenge for the trajectory extraction of visitors’ motion



patterns because the movement trajectory of the sail could

be erroneously detected by the system together with the valid

trajectories of the people moving in the scene. Also, due to

the nature of the application (dimensions of the sail), it is not

possible to position the cameras in such a way that their view

would be unobstructed by the sail. Therefore, it is necessary

to segment the sail in the video so that it can be included

in the scene background. Applying segmentation of the sail

to every frame of the video would not yield good results.

This is because in the cases where the sail is out of the

cameras’ view, valid foreground objects could be segmented

instead. We, therefore, approach the problem by first detecting

whether the sail is present in the scene, and then performing

segmentation only for those frames of the video for which the

detection method gives a positive output.

1) Sail Detection: In order to detect whether the sail is

present in a frame, we construct a binary classifier based on the

random forest algorithm [13]. Random forest is an ensemble

of individual decision tree predictors. Each decision tree is

trained with the same parameters but on a random subset of

the training set. These subsets are generated from the training

set by using a bootstrap procedure. That is, for each tree

in the collection you randomly select the same number of

feature vectors as in the original training set. The selection

of feature vectors is done with replacement i.e. for a given

subset some vectors will occur more than once in the subset

and some will not appear at all. In general, when the training

set for a decision tree is constructed by drawing samples with

replacement from the original training set, about two thirds of

the observations will be included and one third will be left

out. The observations that are left out are called out-of-bag

data and are used for the internal estimation of the training

error. When building the individual decision trees based on

different random subsets of the original training data, at each

node of each tree a random subset of the available variables is

used to select how to best partition the dataset at that node. A

new subset of variables is generated for every node, however,

the size of the subset is fixed for all the nodes and trees. No

pruning is performed i.e., each of the decision trees is built

to its maximum size. The trained decision trees represent the

final ensemble. The classification is performed so that first the

input feature vector is classified by each of the individual tree

models separately, then the output class label is obtained from

the majority of all class labels. The randomness introduced

in the selection of the training subsets and in the variable

selection gives considerable robustness of the random forest

model to outliers, overfitting, and noise [13].

To be able to design suitable features for the random

forest classifier we have analyzed the graylevel histogram

distribution of the image. We apply a Savitzky-Golay [14]

smoothing filter to the image histogram to obtain filtered

histogram data which is used as a feature vector in the random

forest classifier. The filtering of the histogram data is order

preserving, which allows to distinguish the prominent peaks

in the histogram corresponding to uniform objects or areas

in the image. The case where the sail is present in a frame

approximately results in a bimodal histogram distribution of

the given frame.

(a) Original image.
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(b) Graylevel histogram.

Fig. 3: Video frame containing the sail (a) and its graylevel

histogram (b). The output of the Savitzky-Golay filter is shown

on top of the histogram plot in (b).

In order to train the sail classifier, we built a dataset by

uniformly sampling frames from a video sequence of a typical

theater scene where the system was put to work. The video

contained frames where the sail was included in the cameras’

view and where it was not observed, both with and without

people walking in the scene. Then we divided the acquired

dataset into a training set containing approximately 2800

observations and a validation and test sets containing around

700 examples each. We trained the random forest classifier

on the training set and used the validation set to obtain the

optimal parameters by doing a grid search over parameter

space. We tested the performance of the trained classifier

on the separate test set for which we obtained a prediction

accuracy of 95.55%.

2) Segmentation: A rough segmentation of the sail can be

obtained by binarization of the video frames according to a

predefined threshold. We use Otsu’s method [15] to calculate

this threshold automatically. This initial segmentation does not

give sufficient results, however, it can be used as a basis to ob-

tain an improved segmentation. The watershed transform [16]

is a region-based segmentation method for gray-scale images

which considers the gray-scale intensity as altitude in the

topographic surface defined by the image. Areas in the image

form catchment basins divided by watershed lines which

are formed on the border of neighboring basins. Flooding

the catchment basins starting from the minima segments the

image in regions. The watershed algorithm depends strongly

on the choice of local minima i.e., selecting many flooding

sources can lead to over-segmentation of the resultant image.

This is usually the case when using the gradient image to

calculate the watershed transform. By introducing a color pixel

similarity measure, the watershed algorithm can be extended

for the segmentation of color images [17]. The flooding of

the topographic surface of the image can also be treated as a

region growing process from preselected seed pixels. We use

the color image watershed segmentation with region growing

seeds obtained from the morphological processing of the initial

sail segmentation. The results of the segmentation using this

approach can be seen in Figure 4.



(a) (b)

(c) (d)

Fig. 4: Segmentation of the sail from frames in the video (left

column). The segmented region is marked with false color

(right column).

3) Motion Trajectory Extraction: In order to segment the

moving targets from the background in the scene, we use

adaptive background mixture models [18]. In this approach,

each of the pixel values over a period of time are modeled as a

mixture of Gaussians. A new pixel value is matched against the

existing distributions. If a match is found, the parameters of the

(a) (b)

(c) (d)

Fig. 5: Tracking targets on a complex background. Extracted

contours with centroids (b) and (d) of targets in corresponding

scenes (a) and (c). Two targets moving together are merged

after detection (c) and (d).

distribution which matches the new observed pixel value are

updated. Conversely, if a matching Gaussian is not found, then

the least probable distribution is replaced with a new Gaussian

distribution with mean equal to the current pixel value, having

low prior weight and a high variance. Gaussian distributions

from the mixture that have high variance and high support

from the observed data are considered to represent background

processes. We incorporate the sail segmentation algorithm

into the adaptive background mixture models method so that

the pixels belonging to the moving sail are included in the

background model.

We also employ post-processing techniques, namely filter-

ing the segmented image sequences with a median filter, as

well as applying morphological opening, to get rid of the noise

from the previous background subtraction step. Figure 5 shows

an example of the extracted contours of people moving in a

area with a complex background, as detected by the algorithm.

In order to approximate the position of the moving targets in

the scene, we calculate the center of mass for each detected

target. Note that detected objects that are moving together in

a close group are merged, and their position is represented by

a single centroid.

B. Parametrized Path Detection

The output from the previous step of our method gives

the spatiotemporal position of each detected target in the

scene (see Figure 6). Due to the fact that there may be

(a) (b) (c)

(d) (e) (f)

Fig. 6: Spatiotemporal motion trajectories (d)-(f) from the

targets detected in the video of a scene (a)-(c).

inconsistencies in the tracking, such as when the tracked object

is lost in a frame, or when the occlusion of the sail obstructs

the detection of the target, it is necessary to account for

noisy or missing data during the motion path detection. The

standard Hough transform [19] is a robust statistical method

for shape analysis in image data, which has been investigated

and extensively utilized in image processing and computer

vision before e.g., in the work of Illingworth and Kittler [20],

and Kälviäinen et al. [21].

For line detection in images, the Hough transform maps a

point (x, y) from the image plane to a set of points {(ρ, θ) | θ ∈
[0, π]} in the Hough plane, according to the relation:

ρ = x cos θ + y sin θ. (1)

Sinusoidal curves in the Hough plane, which represent differ-

ent collinear points from the image plane, intersect at a point



(ρ′, θ′) giving the parameters of the line in the image plane in

polar form. We augment the Hough line detection method so

that line segments are detected in the spatiotemporal motion

trajectory space. Short line segments are filtered out to prevent

spurious path detection.

The Hough transform method can also be used for the

detection of other parametrized shapes. We use a similar

modification of the Hough transform algorithm to be able

to find circular motion trajectory patterns. The relations that

govern the transformation to Hough parameter space are given

by:

a = x− r cos θ (2)

b = y − r sin θ, (3)

where a, b, and r denote the circle center position and radius,

respectively, in parameter space. Each of the points lying on

a circular pattern in the motion trajectory space forms a circle

in Hough transform space. The circles intersect in the point

(a, b), which represents the center of the detected circle.

When detecting motion patterns, we utilize only the spatial

positions for targets within a recent history time window in

order to be able to detect the relevant patterns in real-time.

Additional parameters, such as orientation and direction of

movement, are calculated for each motion pattern together

with the number and average speed of movement of the targets

detected.

IV. OVERALL SYSTEM ARCHITECTURE OF THE ARTWORK

We constructed a client-server architecture for the inter-

action system. The video feeds of the four cameras in the

camera network are processed with the previously described

methods at the server. The parameters of the detected motion

patterns are then sent to a microcontroller device. We use

the Open Sound Control (OSC) [22] protocol for passing the

data streams between the server and the microcontroller over

the local area network. Based on the received parameters,

the microcontroller logic creates new sail choreographies and

sends control signals to the sail actuators.

Fig. 7: Diagram of the client-server architecture of the system.

V. RESULTS

The results described in this section were obtained from a

video sequence of a theater scene captured with the system.

We used four consumer grade RGB color cameras for the

camera array, which we placed in a top-down view to detect

the motion patterns of the people moving below. The cameras

were visually aligned during setup to provide a composite view

of the scene. Note that additional techniques for registration

of views are not necessary since small misalignments between

camera views are accounted for in the design of the pattern

detection algorithms.

(a) (b) (c)

Fig. 8: Example of a person moving across the scene. The

motion pattern detected by the system is shown in red.

(a) (b) (c)

Fig. 9: A similar example to the one shown in Figure 7 with

the target moving in a different direction.

(a) (b) (c)

Fig. 10: Two targets moving in a circular pattern. The motion

pattern detected by the system is shown in red.

(a) (b) (c)

Fig. 11: Example of a circular motion pattern.

We compared the results of the system with the ground truth

results of the test video sequence. The total duration of the test

video was 11 minutes. During this time two participants were

walking in the scene. Out of the 55 patterns made by the



participants, 42 were correctly detected by the system, there

were 13 false negatives and 4 false positives, which gives a

precision of 91.3% and a recall of 76.4% for the system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a method for motion

path detection from video. The proposed method is used

in the realization of an interactive artwork, where visitors’

motions are translated into novel artistic choreographies. The

contributions of our work are twofold. We have developed

an automatic algorithm which can infer predefined patterns

of movement in real-time. We have also designed a video

segmentation technique that allows the described system to

operate under occlusions.

Detection of additional parametrized motion trajectories

can be easily incorporated into the existing system. Other

applications of the described technique are also possible.

One application is the analysis of the rigid body motion of

performance dancers without the aid of markers. Another

relevant domain is traffic monitoring and analysis, which

stands to gain a great deal from machine vision. To this

end, our method could be used in pedestrian alerting systems,

such as the one described in the work of Zhao et al. [23],

and for vehicle counting and assessment of road utilization.

Finally, the proposed approach could also be applicable in

crowd analysis e.g. to avoid crowd related disasters [24].
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