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Abstract—All known integral equation techniques for simu-
lating scattering and radiation from arbitrarily shaped, p erfect
electrically conducting objects suffer from one or more of the
following shortcomings: (i) they give rise to ill-conditioned sys-
tems when the frequency is low (ii) and/or when the discretization
density is high, (iii) their applicability is limited to the quasi-static
regime, (iv) they require a search for global topological loops,
(v) they suffer from numerical cancelations in the solutionwhen
the frequency is very low. This work presents an equation that
does not suffer from any of the above drawbacks when applied
to smooth and closed objects. The new formulation is obtained
starting from a Helmholtz decomposition of two discretizations of
the electric field integral operator obtained by using RWGs and
dual bases respectively. The new decomposition does not leverage
loop and star/tree basis functions, but projectors that derive from
them. Following the decomposition, the two discretizations are
combined in a Calderon-like fashion resulting in a new overall
equation that is shown to exhibit self-regularizing properties
without suffering from the limitations of existing formula tions.
Numerical results show the usefulness of the proposed method
both for closed and open structures.

I. I NTRODUCTION

Electric Field Integral Equations (EFIEs), while widely
used, are known to be no panacea. The EFIE operator
(EFIO) is composed of vector and scalar potential contri-
butions that scale directly and inversely proportional to the
frequency, respectively. These operators’ divergent properties
is the source of the ill-conditioning of the discretized EFIO
for low-frequencies. This so-called low-frequency breakdown
phenomenon in the past has been dealt with by using loop-star
and loop-tree quasi-Helmholtz decompositions. When using
these decompositions with the EFIO and after appropriate
matrix scaling with suitably chosen powers of(kh) (where
k is the wavenumber andh is the average mesh parameter),
the low frequency breakdown is solved; that is, in the limit of
k going to zero, the matrix condition number is constant. That
said, these methods do not cure the undesirable scaling of the
matrix condition number withh. Following their application,
the matrix condition number scales ash−1, h−2, or h−3

(depending on the formulation). This the so called dense
discretization breakdown. In addition to suffering from dense
discretization breakdown, loop-star/tree decompositions also
require the detection of global loops when the surface is a non-
simply connected geometry, i.e. it contains holes and handles

[1]. Existing general-purpose algorithms for finding global
loops exhibit quadratic complexity. Their cost therefore scales
worse than that of fast integral equation solvers, which exhibit
quasi-linear complexity.Recently a new family of augmented
equations that is immune to low frequency breakdown and
that, remarkably, does not require the detection of global loops
has been introduced [2]. Unfortunately, these formulations still
suffer from dense discretization breakdown, since they inherit
the spectral properties of the EFIO. Finally, several of the
above schemes are susceptible to very low frequency cancela-
tions in the solution vector. In fact, even if the equations are
made well-conditioned, for plane wave scattering problems
the physics dictates that the non-solenoidal and solenoidal
components of the current scale ask and are frequency
independent, respectively. If these two components are not
separated during the solution process, numerical cancelations
that deteriorate the accuracy of the far field computation ensue.
This phenomenon has been first pointed out in [3].

In summary, to the best of our knowledge, there exists
no integral equations that is simultaneously immune to low
frequency and dense discretization breakdown, and free from
very low frequency cancelation and the need to detect global
loops. This paper presents a new equation that does not suffer
from any of these drawbacks. It introduces a new basis-
free loop-star decomposition that derives from projections
and is used to rescale the standard EFIO and remove low
frequency breakdown and very low frequency current can-
celation phenomena. Moreover, the rescaled EFIO is self-
regularizing, and when squared in a Calderon-like fashion,is
immune from dense discretization breakdown. Different from
the standard Calderón EFIO, however, our new operator does
not have any static null-space. In conclusion, the resulting
equation simultaneously is free from low frequency and dense
discretization breakdown, very low frequency cancelations,
and the need to detect global loops.

II. BACKGROUND AND NOTATION

Let Γ be the surface of an orientable PEC object residing
in a background medium of permittivityǫ and permeabilityµ
and letn̂r denoteΓ’s normal vector atr. SurfaceΓ can be
non-simply connected, i.e. it can potentially have holes and/or
handles. The incident electric fieldEi(r) impinges onΓ and
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induces the surface current densityJ(r), which satisfies the
EFIE

T (J) = −n̂r ×Ei (1)

whereT (J) = k Ts(J) + 1

k
Th(J) with

Ts(J) = in̂r ×
∫

Γ

eik|r−r
′|

4π |r − r′|J(r
′) dr′, (2)

Th(J) = in̂r ×∇
∫

Γ

eik|r−r
′|

4π |r − r′|∇s · J(r′) dr′, (3)

and the wavenumberk = 2π/λ = ω
√
ǫµ.

To solve the EFIE by the boundary element method,Γ
is approximated by a mesh of planar triangles with aver-
age edge lengthh, and J(r) is approximated asJ(r) ≈
∑N

n=1 Infn(r) wherefn(r), n = 1, . . . , N are Rao-Wilton-
Glisson (RWG) div-conforming basis functions defined on the
mesh’sN internal edges. To determine the coefficientsIn,
the above expression forJ(r) is substituted into (1) and
the resulting equation is Galerkin tested with the functions
n̂r × f i yielding theN ×N discretized EFIE system̄̄Z Ī =
(

k ¯̄Zs +
1

k
¯̄Zh

)

Ī = V̄ where (¯̄Zs)i,j =
〈

n̂r × f i, Ts(f j)
〉

,

(¯̄Zh)i,j =
〈

n̂r × f i, Th(f j)
〉

, (V̄)i =
〈

f i, n̂r × n̂r ×Ei
〉

,
and (Ī)j = Ij . The EFIO can be alternatively discretized by
using the Buffa-Christiansen (BC) basis functions defined on
the mesh’s barycentric refinement. These functions, similar
to RWGs, are div-conforming and defined on the mesh’sN
internal edges. In what follows they will be denoted byfBC

j

and their explicit definition can be found in [4]. The BC
functions are also quasi curl-conforming in the sense that the
mixed gram matrix( ¯̄Gmix)i,j =

〈

n̂r × f i,f
BC
j

〉

between
BC and curl-conforming rotated RWGs is well-conditioned.
The BC discretized EFIO will be denoted̄̄Z =

(

k ¯̄Zs +
1

k
¯̄Zh

)

where ( ¯̄Zs)i,j =
〈

n̂r × fBC
i , Ts(fBC

j )
〉

and ( ¯̄Zh)i,j =
〈

n̂r × fBC
i Th(fBC

j )
〉

.
To construct the new EFIE, we need to define loop and star

transformation matrices. For a general introduction to loop-star
decompositions the reader should refer to [1]. In the following
the loop functions will be denoted by{Λi, i = 1, . . . , Ns}.
The loop functions are associated with the inner nodes of the
mesh. The loop to RWG transformation matrix (the matrix
whose columns are the coefficients of the loop functions when
expressed as linear combinations of the RWG functions) will
be denoted bȳ̄Λ. The star functions [1], associated with the
cells of the mesh, will be denoted by{Σi, i = 1, . . . , Nns}.
The star to RWG transformation matrix (the matrix whose
columns are the coefficients of the star functions when ex-
pressed as linear combinations of the RWG functions) will
be denoted by¯̄Σ. When Γ is not simply connected (i.e. it
contains handles and/or holes), it is necessary to consideralso
the global loops. The global loops to RWG transformation
matrix will be denoted by¯̄H. The column dimension of̄̄H
is 2Nhandles + Nholes, whereNhandles and Nholes are the
number of handles and holes ofΓ, respectively. The union

of loop, star, and global loop functions (after eliminatingone
linearly dependent star and, on closed structures, one linearly
dependent loop) is a basis equivalent to the RWG basis, i.e.
Ī = ¯̄Λl̄ + ¯̄Σs̄ + ¯̄Hh̄ for any vectorĪ of RWG coefficients.
It should also be noted that both̄̄Λl̄ and ¯̄Hh̄ are RWG coef-
ficients of solenoidal functions. A dual decomposition exists
for the BC functions: given an arbitrary BC coefficient vectorĪ, the following decomposition holds̄I = ¯̄Λl̄+ ¯̄Σs̄+ ¯̄Hh̄. It
should be noted that both̄̄Σs̄ and ¯̄Hh̄ are BC coefficients of
solenoidal functions.

III. T HE NEW EQUATION

We next describe a new EFIE that, contrary to currently
available ones, isconcurrentlyimmune to the low frequency
breakdown and the dense discretization breakdown, as well as
very low frequency solution cancelation. Moreover, the new
equation will not require an identification search of global
loops, that is the matrix̄̄H defined above. The new formulation
is obtained in two steps: (i) first, a quasi-Helmholtz decom-
position is applied to the EFIO to cure it from low frequency
breakdown. For this purpose, we introduce a new, basis-free
decomposition, since a standard quasi-Helmholtz decomposi-
tion introduces a basis-related dense discretization breakdown
(see [5]) and would require the explicit determination of¯̄H
(the global loops). (ii) The new decomposed equation will be
“squared” in a suitable, Calderón like fashion to cure it from
dense discretization breakdown.

First of all, note that since it can be shown that¯̄ΣT ¯̄Λ =
¯̄0 and ¯̄ΣT ¯̄H = ¯̄0 then for an arbitrary RWG vector̄I:
¯̄ΣT Ī = ¯̄ΣT ¯̄Λl̄ + ¯̄ΣT ¯̄Σs̄ + ¯̄ΣT ¯̄Hh̄ = ¯̄ΣT ¯̄Σs̄, so that we get
s̄ = ( ¯̄ΣT ¯̄Σ)+ ¯̄ΣT Ī where( ¯̄ΣT ¯̄Σ)+ denotes the pseudoinverse
of ( ¯̄ΣT ¯̄Σ). Finally, the star component of̄I is obtained by
using the projection̄̄PΣĪ, where the projector̄̄PΣ is defined
as ¯̄PΣ = ¯̄Σ( ¯̄ΣT ¯̄Σ)+ ¯̄ΣT The loops and global loops compo-
nents of Ī can be obtained by the complementary projector
¯̄PΛH = ¯̄I− ¯̄Σ( ¯̄ΣT ¯̄Σ)+ ¯̄ΣT . Finally, define the decomposition
operator ¯̄M = ¯̄PΛH 1√

k
+ i ¯̄PΣ

√
k. Using the decomposition

operator with the EFIO it is easily shown that̄̄MT ¯̄Z ¯̄M =
(

¯̄PΛH ¯̄Zs
¯̄PΛH − ¯̄Zh

)

+O(k), which is clearly immune from
low frequency breakdown. The treatment for BC discretized
matrix ¯̄Z is the same provided that the role of the loop and star
matrices is exchanged. Thus we will define the dual projectors
¯̄PΛ = ¯̄Λ( ¯̄ΛT ¯̄Λ)+ ¯̄ΛT and ¯̄PΣH = ¯̄I− ¯̄Λ( ¯̄ΛT ¯̄Λ)+ ¯̄ΛT and the
associated decomposition operator¯̄M = ¯̄PΣH 1√

k
+ i ¯̄PΛ

√
k

so that also ¯̄MT ¯̄Z ¯̄M will be immune from low frequency
breakdown similarly to the previous case. The procedure for
the practical computation of( ¯̄ΣT ¯̄Σ)+ and( ¯̄ΛT ¯̄Λ)+ is omitted
here for space limitations, but it can be found in [5].

For the standard EFIO both the low frequency and the
dense discretization breakdown are solved by Calderón pre-
conditioning: the EFIO discretized matrix̄̄Z is replaced by the
Calderón preconditioned matrix̄̄Z ¯̄G−1

mix
¯̄Z. This matrix is prov-

ably immune from both low frequency and dense discretization
breakdown, however it has a null-space in statics and it can
suffer from current cancelation at very low frequencies. The



new equation proposed in this work is obtained by replacing
the RWG- and BC-discretized EFIO operators¯̄Z and ¯̄Z with
the respective decomposed ones. After definingĪ =

(

¯̄M
)

Ȳ,
our new equation reads
(

¯̄MT ¯̄Z ¯̄M)

¯̄G−1
mix

(

¯̄MT ¯̄Z ¯̄M
)

Ȳ =
(

¯̄MT ¯̄Z ¯̄M)

¯̄G−1
mix

¯̄MT V̄.

(4)

IV. PROPERTIES OF THENEW EQUATION

Let’s first prove that the operator of the new equation has the
same null-space of the EFIO and thus, in particular, it does not
have the global loops spanned static null-space of the Calderón
EFIE. It is sufficient to prove the statement in statics, in fact
¯̄G−1
mix is non-singular and, away from statics, also the matrices

¯̄M and ¯̄M are well-defined and non-singular. Let’s study
the static limit of ¯̄MT ¯̄Z ¯̄M, i.e. let’s prove that the operator
(

¯̄PΛH ¯̄Zs
¯̄PΛH − ¯̄PΣ ¯̄Zh

¯̄PΣ

)

does not have a null-space. Since
¯̄PΛH ¯̄PΣ = ¯̄0 it is sufficient to prove that̄̄PΛH ¯̄Zs

¯̄PΛH is
non-singular on the range of

[

¯̄Λ, ¯̄H
]

and that ¯̄PΣ ¯̄Zh
¯̄PΣ is

non singular on the range of̄̄Σ. Since on these spaces both
¯̄Zs and ¯̄Zh in statics are symmetric positive definite matrices,
then we get that∀v̄ in the range of

[

¯̄Λ, ¯̄H
]

v̄T ¯̄PΛH ¯̄Zs
¯̄PΛH v̄ = 0 ⇒ ¯̄PΛH v̄ = 0̄

⇒ v̄ is in the range of̄̄Σ ⇒ v̄ = 0̄ (5)

dually, ∀q̄ in the range of¯̄Σ

q̄T ¯̄PΣ ¯̄Zs
¯̄PΣq̄ = 0 ⇒ ¯̄PΣv̄ = 0̄

⇒ q̄ is in the range of
[

¯̄Λ, ¯̄H
]

⇒ q̄ = 0̄ (6)

from this we deduce that̄̄MT ¯̄Z ¯̄M does not have a static null-
space. The same statement is proved for¯̄MT ¯̄Z ¯̄M by using the
same approach. Finally we deduce that the newly proposed
equation (4) has no static null-space since it is the productof
three non-singular matrices.

Let’s now study the conditioning behavior of (4) as a
function of frequency and discretization. Since both¯̄MT ¯̄Z ¯̄M
and ¯̄MT ¯̄Z ¯̄M are immune from the low frequency breakdown,
so will be (4), since¯̄G−1

mix is a frequency independentmatrix.
The new equation is also immune from the dense discretization
breakdown since, after some manipulations, it is easy to see
that the singular value relevant blocks of the new equation are
the same as those of the standard Calderón EFIO (which is
immune from the dense discretization breakdown).

To complete the analysis of the properties of (4) we will
study the frequency behavior of the solution for different types
of excitation in order to show that the solution of (4) does not
suffer from very low frequency cancelations.

If we assume that, as a function ofk, the solenoidal part
of the physical current̄I scales as(Rs, Is) (real part and
imaginary part) and if we assume that the non-solenoidal part
scales as(Rns, Ins), then the scattered far-field due to the
solenoidal part will scale as

(

RF
s , I

F
s

)

= (kIs, kRs) while
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Fig. 1. Sphere: condition number of (4) as a function of the excitation
frequency.

the scattered field due to the non-solenoidal part will scaleas
(

RF
ns, I

F
ns

)

= (Rns, Ins) [3]. Then from the relationship̄Y =
¯̄M−1Ī and the definition of ¯̄M it follows that the solenoidal

part of the solutionȲ of (4) will scale as summarized in
Table I. In the table, all possible kinds of excitation have been
considered. For space limitation we omit the detailed definition
of these excitations and the reason for their frequency scaling,
but the reader can refer to [2]. From the table it is clear
that all the necessary current components are retrieved by our
scheme (real and imaginary for plane wave exitations, purely
imaginary for capacitive and inductive excitations), so that the
new equation always recover correctly both physical currents
and far-fields.

Source
(

√

kRs,
√

kIs

) (

Ins
√

k
, Rns

√

k

)

Recovered terms

Plane Wave
(

√

k, k
√

k
) (

√

k, k
√

k
)

Rs,Ins,Rns,Is

Inductive
(

k2
√

k, 1
√

k

) (

√

k, k3
√

k

)

Is,Ins

Capacitive
(

k4
√

k, k
√

k
) (

√

k, k3
√

k
)

Is,Ins

TABLE I
SCALINGS OF THESOLUTION Ȳ OF (4)

V. NUMERICAL RESULTS

The new equation was tested for a sphere and for a planar
square ring. The first test involves a sphere of unit radius that
is excited by a plane wave. Figs. 1 and 2 show the condition
number of the system matrix of different formulations as a
function of the excitation frequency and the discretization
density, respectively.The proposed equation clearly is immune
from low frequency and dense discretization breakdown. The
behavior of the equation is also compared with that of loop-
star-decomposed and Augmented EFIEs ([2], equation (9)),
that are both suffering from the dense discretization breakdown
(Fig. 2).

The fact that the new equation is immune from the very low
frequency current cancelation is confirmed by Fig. 3 which
show the far field calculated using (4) at10−40Hz. From
Fig. 3 it is clear that although a standard Calderón equation
can provide a stable solution till relatively low frequencies,
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Fig. 2. Sphere: condition number of (4) as a function of the average mesh
sizeh.
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Fig. 3. Sphere: far field calculated when the frequency equals 10
−40Hz

the new equation (4) is immune from the very low frequency
current cancelation and provides stable solutions even when
the frequency is arbitrarily low.

To study the behavior of the new equation (4) when applied
to inductive structures with voltage gap excitations, consider
a square ring inductor with side length1m and width0.25m;
the voltage gap is located in the center of one of the ring’s
sides. Fig. 4 shows the absolute value of the input inductance
as a function of frequency. The values obtained by solving
(4) are in very good agreement with those obtained using
the standard loop-star EFIE. The computed value of the static
inductance is near1.197µH, the approximate inductance value
predicted using classical expressions. Fig. 5 compares the
singular values of the system matrix produced by the standard
Calderón approach and (4) for a frequency of10−40Hz. A
static null-space of dimension one is expected for the Calderón
EFIO, since the open structure has one hole. An almost zero
singular value is evident in Fig. 5. In contrast, and as predicted
by our theory, the new equation however does not have a
static null-space and thus the global loop does not need to
be detected.

VI. CONCLUSIONS

This paper presented an electric field integral equation that
is immune from both low-frequency and dense discretization
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Fig. 4. Input inductance of the square inductor as a functionof the frequency.
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Fig. 5. Square inductor: singular values of the standard Calderón EFIO and
of operator in (4).

breakdown, does not require a search for global topological
loops, and does not suffer from numerical cancelations in
the solution when the frequency is very low. The compu-
tational cost of all calculations in the new formulation not
required by the solvers it builds on scale linearly in the
number of unknowns; hence the new formulation can be
applied in tandem with fast methods without degradation in
computational complexity. Numerical results demonstrated the
beneficial properties of the new technique.
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