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CHAPTER 5

Abduction of Multiple Explanatory
Hypotheses

Tjerk Gauderis

Abstract

In abduction—the process of finding explanatory hypotheses for puzzling
phenomena—one is often confronted with multiple explanatory hypotheses. In
science one generally wants to test further the di↵erent hypotheses one by one.
But, if we try to model this in a logic and make it possible to derive the di↵erent
hypotheses apart from each other, we generally can derive their conjunction too.
An elegant solution within the framework of adaptive logics is provided in Gaud-
eris (2011). But this approach is not restricted to science. While it is true that a lot
of cases in everyday reasoning require a more practical approach—in which one
acts on the knowledge that all the di↵erent hypotheses might be the case—there is
also a considerable amount of situations in which the more theoretical approach
of the scientist is needed. In this paper we try to illustrate this by using this logic
to model reasoning within detective literature.

1 The Problem of Multiple Explanatory Hypotheses
Abduction and Detective literature. Charles Peirce thought that there were three
characteristic ways of reasoning in science. In addition to the better-known ways of
deduction and induction, there was a third rational way in which scientists can reason:
abduction or “the process of forming an explanatory hypothesis” (Peirce 1958–60, CP
5.171). The logical schema of forming such an explanatory hypothesis is for Peirce
(1958–60, CP 5.189) the following:
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The surprising fact, C is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

Obviously, this is a form of defeasible or fallible reasoning, of which Peirce (1958–
60, CP 2.777) himself was perfectly conscious: “The hypothesis which it problemat-
ically concludes is frequently utterly wrong itself, and even the method needs not
ever lead to the truth.” When we translate his schema to predicate logic, we get the
following schema:

(8↵)(A(↵) � B(↵)), B(�)/A(�).

This schema is better known as the logical fallacy A�rming the Consequent, but
this is only a fallacy if we stick within deductive logics. In cases in which we are not
able to obtain any deductive results that can explain our observations, Peirce (1958–
60, CP 2.777) makes a point in stating that “. . . its method is the only way in which
there can be any hope of attaining a rational explanation".

Quite often, people have acknowledged that this is essentially the same kind of
reasoning as the reasoning employed in crime investigation or detective literature. As
the di↵erent articles in the book ‘The Sign of Three’1 point out, solving a murder case
by tracing back the clues is essentially an abductive operation. So, while Holmes was
maybe wrong when he said to Watson that it was elementary deduction, he surely was
not wrong in thinking that his reasoning was logical, it was only according to the laws
of a logic for abduction.

The Problem of Multiple Explanatory Hypotheses. Still, in solving a murder
case, our detective is quite often confronted with two or more suspects. When we try
to model this with a formal logic, this can lead to a problem. Consider the following
example. Suppose we are confronted with the puzzling fact or clue Pa while our back-
ground knowledge contains two possible causes: (8x)(Qx � Px) and (8x)(Rx � Px).
There are actually now two roads that can be taken. We could construct a logic in
which we can only derive the disjunction (Qa_Ra) and not the individual hypotheses
Qa and Ra. This road, called practical abduction,2 is suitable to model situations in
which one has to act on the basis of the conclusions. For instance, in medical di-
agnoses, a physician who finds out that two possible diseases can be the cause for
the examined symptoms, needs to take appropriate steps based on the fact that both
diseases might be the cause.

But our detective has a more theoretical perspective and is interested in finding
out which of the hypotheses is the actual cause. Therefore, it is important that he
can abduce the individual hypotheses Qa and Ra in order to examine them further
one by one. This is because, on the one hand, one has to be able to derive Qa and
Ra separately, but on the other hand, one has to prevent the derivation of their con-
junction (Qa ^ Ra). Not only does it seem counterintuitive to take the conjunction of

1See Sebeok and Eco (1988). This book investigates the relation between the writings of Charles Peirce
on the one hand and the writings of Edgar Allen Poe (Auguste Dupin) and Arthur Conan Doyle (Sherlock
Holmes) on the other hand.

2According to the definition suggested in Meheus and Batens (2006, pp. 224–225) and used in Lycke
(2009).
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two possible hypotheses as an explanation. Also, if the two hypotheses are actually
incompatible – a victim cannot be murdered twice – it would lead to explosion. So it
is clear that for this application, we need the second road.

Adaptive Logics for Abduction. Since abduction is a defeasible type of reasoning,
adaptive logics are a good tool to model this type of relation.3 The main advantages
with respect to this problem can be summed up as follows.

Firstly, it allows for direct implementation of defeasible reasoning steps (in casu
applications of A�rming the Consequent), which makes it possible to construct log-
ical proofs that nicely integrate defeasible (ampliative in this case) and deductive in-
ferences. This corresponds to the natural way in which humans reason.

Secondly, the formal apparatus of an adaptive logic instructs one to specify exactly
which conditions would falsify the (defeasible) reasoning step. So, if this condition
is derived later on in the proof, it defeats in a formal way all steps derived on the
assumption that this condition is false. As these conditions are assumed—as long as
one cannot derive them—to be false, they are called abnormalities in the adaptive
logic literature. This possibility to defeat previous reasoning steps mirrors nicely the
dynamics that is found in actual human reasoning.

Thirdly, there are for all adaptive logics in standard format generic proofs for most
of the important metatheoretical properties (including soundness and completeness).

Within the adaptive logics program, several logics have been developed that model
abductive reasoning. Practical abduction—in which the disjunction of the explanatory
hypotheses is derived—is, for instance, adequately modelled in the logics LAr and
LAr

s .4 Theoretical abduction has been modelled by the logic AbLt,5 but here we will
concentrate on the logic MLAs, developed in Gauderis (2011) for the purpose of mod-
elling abductive reasoning in science. This logic provides an elegant way out of this
problem by adding modalities to the object language and deriving—in case of our toy
example that we used to introduce the problem—the hypotheses ⌃Qa and ⌃Ra. In this
way, the scientist or detective can work further on the individual hypotheses without
having to prevent the conjunction, because (⌃Qa^⌃Ra) does not imply ⌃(Qa^Ra) in
any standard modal logic. The (Kripke-)semantics of this logic also foresees that ev-
erything that follows from investigating further one of the hypotheses is only verified
within the possible world made accessible by formulating this hypothesis. The graphic
representation of the semantics of our toy example below, illustrates that within this
logic, di↵erent hypotheses and their conclusions are considered independently from
each other.

3Some features of adaptive logics will be explained in order to make the paper understandable for
people not familiar with adaptive logics. But the remarks made in this paper can, due to space limitations,
hardly be called a good introduction to adaptive logics. We refer readers interested in adaptive logics to
Batens (2011); Batens (2007) for a systematic overview and to Batens (2004) for a more philosophical
defense of the use of adaptive logics.

4See Meheus and Batens (2006); Meheus (2007); Meheus (2011).
5See Lycke (2009).
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This feature makes the logic MLAs (Modal Logic for Abduction) very apt to
model, apart from its applications within science, a lot of everyday reasoning. The
goal of this paper is to illustrate this with a crime investigation example. But before
we present a more elaborate example, we will in the following section explain the
logic MLAs.

2 Formal Presentation of the Logic MLAs

As any adaptive logic in the standard format, MLAs is defined by a triple of a lower
limit logic, a set of abnormalities and a strategy. These will be introduced in the
following paragraphs after we have specified the language schema.

Formal Language Schema. Let L be the standard predicate language of CL with
logical symbols ¬,�,^,_,⌘,8 and 9. We will further use C, V, F andW to refer
respectively to the sets of individual constants, individual variables, all (well-formed)
formulas and the closed (well-formed) formulas of L.
LM , the language of our logic, is L extended with the modal operators ⇤ and ⌃,

where ⇤ is primitive and ⌃ defined in the usual way. WM , the set of closed formulas
of LM is the smallest set that satisfies the following conditions:

1. if A 2W, then A, ⇤A, ⌃A 2WM

2. if A 2WM , then ¬A 2WM

3. if A, B 2WM , then A ^ B, A _ B, A � B, A ⌘ B 2WM

It is important to note that there are—among other things—no occurrences of modal
operators within the scope of another modal operator or a quantifier. We further define



Abduction ofMultiple Explanatory Hypotheses · 49

the set W�—the subset of WM , the elements of which can act as premises in our
logic—as the smallest set that satisfies the following conditions:

1. if A 2W, then ⇤A, ⌃A 2W�

2. if A, B 2W�, then A ^ B 2W�

It is easily seen thatW� ⇢WM .

Lower Limit Logic. Each adaptive logic is built on the deductive frame of a Tarski-
logic. This lower limit logic (LLL) defines the undefeasible part of our logic. Every-
thing that follows from the premises by the LLL will never be defeated.

The LLL of MLAs is the predicate version of D, restricted by the language
schema. D is characterized by a full axiomatization of predicate CL together with
two axioms and an inference rule:

K ⇤(A � B) � (⇤A � ⇤B)

D ⇤A � ⌃A

NEC if ` A, then ` ⇤A

The semantics for this logic can be expressed by a standard possible world Kripke
semantics where the accessability relation A between possible worlds is serial, i.e.
for every world w in our model, there is at least one world w0 in our model such
that wAw0. Soundness and completeness for D is—as for all normal modal logics—a
well-established fact.

Set of Abnormalities. The defeasible part of our logic is defined by the combination
of the strategy and the set of abnormalities. This is a set of LLL-contingent formulas
characterized by a logical form (or a union of such sets) that are assumed to be false
‘as much as possible’. These assumptions allow us to derive, apart from the deductive
consequences of the LLL, defeasible consequences that can be derived on a condi-
tion, viz. the falsehood of the abnormalities. The inference rules are reduced to three
generic rules: a premise, an unconditional and a conditional inference rule. An extra
element is added on each line which is the set of conditions on which the formula on
that line is derived.

PREM If A 2 �:
...
...

A ;

RU If A1, ..., An `LLL B: A1 �1
...

...
An �n

B �1 [ . . . [ �n

RC If A1, ..., An `LLL B _ Dab(⇥) A1 �1
...

...
An �n

B �1 [ . . . [ �n [ ⇥
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To define the set of abnormalities of MLAs,6 we first need to introduce a new notation.
Suppose that APCNF(↵) is the Prenex Conjunctive Normal Form of A(↵) and that for
Qi 2 {8,9}, �i 2 V, Ai(↵) 2 F :

APCNF(↵) = (Q1�1) . . . (Qm�m)(A1(↵) ^ . . . ^ An(↵)).

Then we can define A�1
i (↵) (1 6 i 6 n) as follows:

if n > 1 : A�1
i (↵) =d f (Q1�1) . . . (Qm�m)(A1(↵) ^ . . . ^ Ai�1(↵) ^

Ai+1(↵) ^ . . . ^ An(↵)),
if n = 1 : A�1

1 (↵) =d f >.

The idea is to have a notation for the formula formed by leaving out the ith conjunct.
With this notation the set of abnormalities is defined as follows:

⌦ = {⇤((8↵)(A(↵) � B(↵)) ^ (B(�) ^ ¬A(�)))

_⇤(8↵)B(↵) _
n_

i=1

⇤(8↵)(A�1
i (↵) � B(↵)) |

No predicate that occurs in B occurs in A,
↵ 2 V, � 2 C, A, B 2 F }.

This form might look complex, but its functioning is quite straightforward. We
actually just made a disjunction of three reasons why we stop considering A(�) as a
good explanatory hypothesis for the phenomenon B(�). These three possible reasons
are (i) when ¬A(�) is the case, (ii) when B(�) is a tautology (and obviously, does
not need an explanatory hypothesis) or (iii) when A(�) has a redundant part and is
therefore not an adequate explanatory hypothesis.

From now on, we can unambiguously shorten this logical form of the abnormali-
ties as !A(�) . B(�) which could be read as “A(�) is not a valid hypothesis for B(�)".

Adaptive Strategy. Finally, a strategy is needed to define how to interpret the idea
‘false as much as possible’ exactly. In that way, the strategy orders which defeasible
reasoning steps should be marked.7

Definition 2.1 (Marking for the simple strategy). Line i with condition � is marked
for the simple strategy at stage s of a proof,8 if the stage s contains a line of which an
A 2 � is the formula and ; the condition.

6The set of abnormalities is, due to space limitations, presented here quite briefly. For a more elaborate
explanation how this set came to be, we refer to Gauderis (2011) in which the logic was presented for the
first time.

7In adaptive logics, traditionally the mark X is used to indicate that a step is defeated.
8A stage of a proof is a sequence of lines and a proof is a chain of stages. Every proof starts o↵ with

an empty sequence (stage 0). Each time a line is added to the proof by applying one of the inference rules,
the proof comes to its next stage, which is the sequence of lines written so far including the new line.
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Definition 2.2. A formula A is derived from � at stage s of a proof i↵ A is the formula
of a line that is unmarked at stage s.

Definition 2.3. A formula A is finally derived from � at stage s of a proof i↵ A is de-
rived at line i, line i is not marked at stage s and remains unmarked in every extension
of the proof.9

Definition 2.4 (Final Derivability). For � ⇢ W�: � `MLAs A (A is finally MLAs-
derivable from �) i↵ A is finally derived in a MLAs-proof from �.

3 Application of MLAs in Detective Literature
To illustrate the functioning of this logic, we will make up an original story. This is
because we do not want to let our example grow too complex (and thus, less illustra-
tive).10

On a certain morning, X is found murdered in mysterious circumstances.
From our first investigations we are able to determine three suspects (S x)
a, b and c who could be the murderer (Mx). Confronting these suspects
with the facts, only c is able to pull out a water tight alibi (Ax) for the
moment of the murder, 10.30am. Further, at the crime scene we find two
clues: some long blond hairs at the murder weapon and a receipt of the
tailor delivered at 9.30am, both of which could not have belonged to the
victim.

The whole of this data constitutes our background knowledge. Formalized we get
our initial premise set �. The exact meaning of the predicates describing the clues is
defined as follows:

B1 x “x was in the possession of some long blond hairs at 10.30am"
T1 x “x was in the possession of the tailor receipt at 10.30am"
T2 x “x received the tailor receipt at 9.30am"

Then, we can start o↵ our proof (which models our reasoning process):11

1 ⇤(8x)(Mx � S x) -;PREM ;
2 ⇤(8x)(Ax � ¬Mx) -;PREM ;
3 ⇤(S a ^ S b ^ S c) -;PREM ;
4 ⇤(¬Aa ^ ¬Ab ^ Ac) -;PREM ;
5 ⇤(8x)(Mx ⌘ B1 x) -;PREM ;
6 ⇤(8x)(Mx ⌘ T1 x) -;PREM ;

Now, the logic abduces three possible hypotheses, but the third one is—as expected—
directly marked.

9This definition is slightly di↵erent from the more general definition mentioned in Batens (2011) be-
cause, using the simple strategy, it is in our case not possible that a marked line becomes unmarked at a
later stage of a proof.

10Obviously we also don’t want to spoil any plot of a classic in the genre.
11The only formalization that might appear a bit odd is the first line that seems to state that the murderer

is always a suspect. Still, this line is the correct formalization, since this logic models a reasoning process
that leads to a murderer. Consider the following: if the murderer was never suspected, he also will never be
caught. So the actual meaning of the predicate Mx is more epistemological (like the predicate S x essentially
also is): “It can be shown that x is the murderer”.
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7 ⌃Ma 1,3;RC {!Ma . S a}
8 ⌃Mb 1,3;RC {!Mb . S b}
9 ⌃Mc 1,3;RC {!Mc . S c} X11

10 ⇤¬Mc 2,4;RU ;
11 !Mc . S c 1,3,10;RU ;

Left with two suspects, we need to investigate further the information of
our clues. On the one hand, b actually has long blond hair and could be
the owner of the found hairs, while a has ginger hair and could therefore
not be the owner. But on the other hand, the tailor (who wasn’t aware
that a murder had happened) assures us that nobody with blond hair has
entered his shop that morning, while several people with ginger hair did.
Still, we have no reason to doubt the fact that it was the murderer himself
that was that morning in the shop.12 Puzzled by this new information, we
bring the suspects a final visit to confront them with the clues. But when
we ring at a’s door, the door is opened by a blond woman who says to be
a’s wife.

We can now add this extra information to our proof.13

12 ⌃B1a ^ ⇤B1b -;PREM ;
13 ⌃T2a ^ ⇤¬T2b -;PREM ;
14 ⇤(8x)(T2 x ⌘ T1 x) -;PREM ;

With these new data, our detective can at this point rule out one more suspect. So,
only one suspect is left. It is the only hypothesis we can derive that is compatible with
all the known data. Here one can see again that hypothesis formation out of a certain
background knowledge is closely related with compatibility.

...
...

...
7 ⌃Ma 1,3;RC {!Ma . S a}
8 ⌃Mb 1,3;RC {!Mb . S b} X16

...
...

...
15 ⇤¬Mb 6,13,14;RU ;
16 !Mb . S b 1,3,15;RU ;

Some Concluding Remarks Is it also actually possible to come with conclusive ev-
idence? Here we have to keep in mind that we are dealing with a logic for abduction
or hypothesis formation. This should not be confused with deciding whether we have
conclusive evidence. In science too, the forming of hypotheses and the confirmation
of theories are two di↵erent steps in the scientific process. These two di↵erent meth-
ods were actually the two things that Charles Peirce wanted to keep seperate in his
methodology of science by discerning abduction and induction.

12This assumption is made because we don’t want the example to grow too complex; but it actually also
nicely illustrates how many ‘hidden assumptions’ there are in a reasoning process, assumptions that have to
be spelled out fully in a formal logic.

13Technically speaking, we have a new premise set �0 and need to start a new proof, but it is easily seen
that we can start our new proof by copying the previous proof and continue to add the new data as premises.
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At the end of the day, we illustrated in this paper that the logic MLAs, developed
to model abduction in science, can also be used in more everyday life situations, as,
for instance, our exploration in the detective genre shows. At first sight, the reasoning
process seems quite equivalent. From a formal point of view, there is actually one
major di↵erence. A detective will point his attention to which subject is the murderer;
his hypotheses are, for instance, Ma, Mb and Mc. A scientist on the other hand, will
focus more on the predicates or properties; his hypotheses for a puzzling phenomenon
Pa will most likely be modelled with hypotheses of the form Fa, Ga and Ha. It is an
interesting route to investigate whether this formal di↵erence leads to more di↵erences
between the two types of reasoning.
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