

Elucidating catalytic reaction mechanisms based on transient kinetic data: the Y-Procedure approach

<u>Evgeniy A. Redekop</u>^a, Gregory S. Yablonsky^b, Denis Constales^{a,c} Palghat A. Ramachandran^d, Xiaolin Zheng^e, Gabriel Veith^f, Rebecca Fushimi^g, Guy Marin^a, and John T. Gleaves^d

^aLaboratory for Chemical Technology, Ghent University http://www.lct.UGent.be

ISCRE-2012, Maastricht, Netherlands, 04-09-12

1

brought to you by CORE

Outline

- Introduction
 - Scope of the problem
 - Thin-Zone TAP experiments and the Y-Procedure
- Mechanism identification strategy:
 - Surface uptakes
 - Kinetic coherency
- Example: Adsorption vs. Impact mechanisms of CO oxidation
- Case study: CO oxidation on Au/SiO₂ catalysts
- Conclusions

Scope of the problem

Given a collection of possible elementary steps, how do we decide which particular combination of steps is at work in our experiment?

Which subset is kinetically important in my experiment?

Thin-Zone Temporal Analysis of Products (TAP)

- Microreactor packed with real (technical) catalyst.
- Small (10¹⁴ molecules) and narrow (150 μs) pulses of gas.
- Transport of gas via well-defined **Knudsen diffusion**.
- Exit flows are measured with **millisecond temporal resolution**.
- Thin catalyst zone remains highly **uniform** during kinetic measurements.
- catalyst. s) Microreactor Slide valve (open) TC Inert zone Vacuum ≈ 10⁻⁹ torr
- A combination of State-defining and State-Altering experiments.

Systematic strategy

A. For a given catalyst state:

- 1. Reconstruct gas concentrations and reaction rates
- 2. Evaluate <u>surface uptakes</u> based on gas rates
- 2. Explore how transient rates and concentrations behave relatively to each other (temporal coherency/decoherency)
- **B.** Repeat for evolving catalyst states

Concept

Surface Uptakes

Communication between gas and surface phases

Molecular adsorption:	Z + A = ZA
Dissociative adsorption:	2Z + A = 2ZA
Product release:	ZA = Z + B

Communication between gas and surface phases

Molecular adsorption:	Z + A = ZA
Dissociative adsorption:	2Z + A = 2ZA
Product release:	ZA = Z + B

Communication between gas and surface phases

Netherlands, 04-09-12

Evaluating surface uptakes

- Generally, it is **not** possible to express individual surface concentrations through gaseous rates.
- But when all elementary steps:

1) Exchange molecules with the gas phase (types 1 and 2)

2) Certain connectivity condition are fulfilled

It is **possible** to express surface concentrations through a linear combination of gaseous reaction rates:

$$C_s(t) = C_{s,init} + \underbrace{\int_0^t \sum_i \nu_i r_i^+(t') dt'}_i - \underbrace{\int_0^t \sum_i \nu_i r_i^-(t') dt'}_i = C_{s,init} + \underbrace{\int_0^t \sum_g \nu_g R_g(t') dt'}_g$$

Uptake Release Gas Rates

Concept

Kinetic coherency

Kinetic (de)coherency

Kinetic coherency – Every combination of elementary steps leads to synchronization of certain kinetic characteristics

Kinetic (de)coherency

Kinetic coherency – Every combination of elementary steps leads to synchronization of certain kinetic characteristics

Rate-Rate coherency:

If A is consumed and B is produced in the same step, their rates must be synchronized (equal in this case):

 $R_A(t) = R_B(t)$

Kinetic (de)coherency

Kinetic coherency – Every combination of elementary steps leads to synchronization of certain kinetic characteristics

Rate-Rate coherency:

If A is consumed and B is produced in the same step, their rates must be synchronized (equal in this case):

 $R_A(t) = R_B(t)$

Rate-Concentration coherency:

Assuming the law of mass actions is valid, certain combinations of rates and concentrations must be synchronized, e.g:

```
R_{AB}(t) / C_{A}(t)C_{Z^{*}}(t) \neq f(t)
```

Illustrative example

Model CO oxidation

Prototypical mechanism: CO oxidation

$$O_{2} + 2Z \xrightarrow{k_{1}} 2ZO$$

$$CO + Z \xrightarrow{k_{+2}} ZCO$$

$$ZO + CO \xrightarrow{k_{3}} Z + CO_{2}$$

$$ZO + ZCO \xrightarrow{k_{4}} 2Z + CO_{2}$$

Prototypical mechanism: CO oxidation Impact mechanism or Eley-Rideal (ER)

 $O_{2} + 2Z \xrightarrow{k_{1}} 2ZO$ $O_{2} + Z \xrightarrow{k_{12}} ZOO$ $CO + Z \xrightarrow{k_{12}} ZOO$ $ZO + CO \xrightarrow{k_{3}} Z + CO_{2}$ $O_{1} - Oxygen atom$ $O_{2} - Oxygen atom$ $O_{2} - Oxygen atom$ $O_{3} - Carbon atom$ $O_{$

Prototypical mechanism: CO oxidation Adsorption mechanism or

Langmuir-Hinshelwood (LH)

Prototypical mechanism: CO oxidation

ER + buffer CO adsorption

$$O_{2} + 2Z \xrightarrow{k_{1}} 2ZO$$

$$CO + Z \xrightarrow{k_{+2}} ZCO$$

$$ZO + CO \xrightarrow{k_{3}} Z + CO_{2}$$

$$ZO + ZCO \xrightarrow{k_{3}} 2Z + CO$$

Prototypical mechanism: CO oxidation

Combined mechanism or ER + LH

$$O_{2} + 2Z \xrightarrow{k_{1}} 2ZO$$

$$CO + Z \xrightarrow{k_{+2}} ZCO$$

$$ZO + CO \xrightarrow{k_{3}} Z + CO_{2}$$

$$ZO + ZCO \xrightarrow{k_{4}} 2Z + CO_{2}$$

CO pulse over fully oxidized surface

Mechanism discrimination is challenging based on exit-flow data

CO pulse over fully oxidized surface

CO pulse over fully oxidized surface

Decision tree: CO oxidation

ISCRE-2012, Maastricht, Netherlands, 04-09-12

Case study

CO oxidation on Au catalyst

Case study: CO oxidation on Au/SiO₂ Au/SiO₂ catalyst prepared by magnetron sputtering is a useful model system:

- Non-reducible carrier eliminates support effects
- Gold NPs supported on silica are thermally stable
- High weight loading (~10%) which has not been investigated previously
- Not contaminated by chemical precursors

Case study: CO oxidation on Au/SiO₂

1. Pretreatment with O₂ flow **O**₂ 2. Evacuation to TAP cond. 3. Titration with CO pulses СО

Case study: CO oxidation on Au/SiO₂

Pretreatment pressure

Experiment

X. Zheng et al., 2010

ISCRE-2012, Maastricht, Netherlands, 04-09-12

Case study: CO oxidation on

Au/SiO₂

Pretreatment pressure

Experiment

Mechanistic hypothesis

Oxygen

02

1

2

flow pretr. CO titr. CO CO_2 1 2

TAP:

Two kinetically distinct "reservoirs" exchanging oxygen

> ISCRE-2012, Maastricht, Netherlands, 304-09-12

X. Zheng et al., 2010

Case study: CO oxidation on Au/SiO₂ Intra-pulse analysis (Y-Procedure)

местепаниз, 04-09-12

Case study: CO oxidation on Au/SiO₂ Intra-pulse analysis (Y-Procedure)

Case study: CO oxidation on Au/SiO₂ Intra-pulse analysis (sub-second time scale)

Case study: CO oxidation on Au/SiO₂ Intra-pulse analysis (sub-second time scale)

Netherlands, 04-09-12

Conclusions

• Developed **novel systematic approach** to mechanism discrimination based on the transient kinetic analysis via the Y-Procedure.

 Case study suggest the existence of at least two states of oxygen on the Au/SiO₂ catalyst, only one of which is directly involved in CO oxidation under TAP conditions.

Acknowledgements

Prof. G. B. Marin

Marie Curie IIF fellowship

Colleagues at various places

Q&A