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Abstract—It has been shown for some time that a Recurrent
Neural Network (RNN) can perform an accurate acoustic-
phonetic decoding of a continuous speech stream. However,
the error back-propagation through time (EBPTT) training of
such a network is often critical (bad local optimum) and very
time consuming. These problems hamper the deployment of
sufficiently large networks that would be able to outperform
state-of-the-art Hidden Markov Models. To overcome this
drawback of RNNs, we recently proposed to employ a large
pool of recurrently connected non-linear nodes (a so-called
reservoir) with fixed weights, and to map the reservoir outputs
to meaningful phonemic classes by means of a layer of linear
output nodes (called the readout nodes) whose weights form the
solution of a set of linear equations. In this paper, we collect
experimental evidence that the performance of a reservoir-
based system can be enhanced by working with non-linear
readout nodes. Although this calls for an iterative training, it
boils down to a non-linear regression which seems to be less
critical and time consuming than EBPTT.
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I. INTRODUCTION

Using Recurrent Neural Networks (RNN) as classifiers
has a long tradition in the domain of machine learning and
it is often argued that these systems can be seen as an
implementation with a cognitive motivation. Especially the
recurrent connections that are used to exchange information
between computational nodes also seem to exist in many
brain structures. In the early nineties RNNs were also
successfully applied to speech recognition [1] but due to the
critical training procedure [2], it was difficult to scale them
up to reach state-of-the-art results on today’s continuous
speech recognition benchmarks.

In our previous work we presented an alternative neural
implementation where the idea of a RNN is adopted but
simplified by imposing architectural constraints which lead
to a much simpler training procedure. We were able to show
that this paradigm of Reservoir Computing (RC) [2]–[4]
can be successfully used for isolated and connected digit
recognition in clean and noisy conditions [5] as well as
for continuous phoneme recognition [6]. All results were
obtained with systems comprising a recurrently connected

neural network of nodes with randomly fixed input and
recurrent weights (a so-called reservoir) and a layer of
linear readout nodes with trained weights. Each readout node
computes a linear combination of the reservoir node outputs.
The readout weights are designed so that a regularized mean
squared error between the computed outputs and the desired
outputs for a set of training examples is minimized. Under
these constraints, there exists a closed-form solution for the
weights which can be obtained by inverting a squared matrix
and performing some additional matrix multiplications.

In the present study we systematically investigate how
the performance of a reservoir-based system is affected
by changing the constraints to which it is subjected. With
performance we not only mean accuracy here, but also
memory requirements, computational load, training time and
scalability to complex problems.

The paper is organized as follows. First we review the
concept of traditional RC (Section II). Then we discuss
the changes that are necessary to accommodate non-linear
readouts, followed by the new opportunities that emerge to
further improve the system performance (Section III). And
subsequently, we present an experimental assessment of the
architectures we investigated (Section IV). We end the paper
with some conclusions and ideas for future work.

II. TRADITIONAL RESERVOIR COMPUTING

A. The reservoir

A traditional reservoir, originally called an Echo State
Network [2], is a dynamical system that is composed of
a pool of recurrently connected non-linear computational
nodes. The reservoir is stimulated by time varying inputs
(see Figure 1). If the inputs at time t are given by u[t] and
if the outputs of the reservoir nodes at time t constitute the
reservoir state vector x[t], then x[t] is computed as

x[t] = fres(Wresx[t− 1] + Winu[t]) (1)

In our case, the activation function of the reservoir nodes
is either fres(z) = logistic(z) or fres(z) = tanh(z).
The weight matrices Win and Wres specify which input-
to-reservoir and which internal reservoir connections are
present and how important they are.
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Figure 1. A reservoir contains non-linear computational nodes that are
stimulated by inputs as well as by reservoir nodes. The interconnections
between the nodes are described by two interconnection matrices.

Due to its recurrent connections, a reservoir can capture
long-term dynamics of the input data and is therefore an ap-
pealing method to create feature vectors that are determined
by the recent past. In addition, the reservoir can memorize
its node activations by integrating information over time by
using leaky integrator nodes [4] rather than the classical
memoryless nodes. In that case, Equation 1 is extended to

x[t] = (1−λ)x[t−1]+λfres(Wresx[t−1]+Winu[t]) (2)

For λ < 1 the leaky nodes implement a fading memory of
the past state vectors.

The reservoir weights are fixed randomly but the weight
fixing process uses some control parameters to guarantee a
stable reservoir system that analyses the inputs at a desired
timescale. One of these parameters is the spectral radius
(SR) [3], defined as the largest absolute eigenvalue of the
recurrent weight matrix. The SR can easily be controlled by
rescaling the recurrent weight matrix. By making it smaller
than one, a stable system can be guaranteed. The smaller the
SR is, the less impact the recurrent connections will have
on the behavior of the reservoir. The parameter λ (leak rate)
encodes the integration time constant τ (in time units) of the
reservoir nodes via λ = 1−e−1/τ . To control the excitability
of the reservoir by the inputs one can change the maximum
magnitude of the input weights and the sparseness of the
input weight matrix.

B. The readout layer

In order to use reservoirs for e.g. classification, one needs
a layer of readout nodes (see Figure 2) that ’read out’ the
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Figure 2. In order to interpret the reservoir state vector x, a readout layer
is trained to classify the state vector into predefined classes. The readout
nodes are normally linear.

reservoir state. The readout y[t] is then computed as

y[t] = fout(Wout x[t]) (3)

with Wout characterizing the reservoir-to-output connec-
tions and with fout representing the activation function of
the readout nodes. In a traditional Echo State Network, this
is a linear function fout(z) = z.

The readouts are meant to represent meaningful classes
and the non-zero elements of the output weight matrix Wout

are determined so as to minimize the mean difference be-
tween the computed readouts and the desired readouts over
a set of labeled training examples. In traditional reservoir
systems, the readout nodes are linear and the error criterion
is a regularized mean squared error. If the training state
vectors (created by the reservoir) form the Nt rows of matrix
X and if the corresponding desired targets form a matrix D,
then Wout is given by

Wout = arg min
W

(
1

Nt

(
||XW −D||2

)
+ ε ||W||2

)
(4)

The regularization term ε ||W||2 is meant to limit the norm
of the output weights in order to prevent over-fitting.

Equation 4 boils down to a Ridge Regression [7] and its
closed-form solution is given by

Wout = (XTX + ε I)−1(XTD) (5)

with I representing the unit matrix. The computation of
Wout just requires the inversion of a squared matrix and
some extra matrix multiplications.

C. Performance issues

The proposed method has two main advantages: it always
finds the globally optimal solution (no risk to get stuck in a
‘poor’ local optimum) and it does so in one step. Neverthe-
less, the size of XTX and the time needed to construct it are
both quadratically proportional to the reservoir size, defined
as the number of reservoir nodes. The time to perform the
required matrix inversion is even cubically proportional to
the reservoir size. There may thus be problems of scalability
to very large reservoirs like the ones we need for continuous
speech recognition [6].

III. INTRODUCING A NON-LINEAR READOUT LAYER

If the activation function of the readout nodes is no longer
linear (see Figure 2), it is no longer possible to find a
closed-form solution for the optimal output weights. In that
case one has to apply an iterative training procedure such
as e.g. logistic regression [8]. Since we do not want to
confine ourselves to logistic (sigmoidal) nodes, we applied
the general on-line training method described in [9] which
was already used successfully before for the training of big
Multi-Layer Perceptrons (MLP) for speech recognition. The
method updates the weights after every presentation of a new
training example. It combines normalization for rescaling



the inputs, gradient-descent for updating the weights and
line search for controlling the learning speed [10]. The
weights on the connection from node k to node i are updated
according to

∆wik = −γ rik
∂c

∂wik
(6)

with c being the criterion one intends to minimize. The
quantity rik is a deterministic function of the activation
function of node i, the fan-in of that node and the 90-th
percentile of the squared output of node k (see [9] for a
motivation and more details). In the special case of a fully
connected single layer perceptron (the situation considered
here), all nodes have the same fan-in, and since the input
normalization equalizes the percentiles of the incoming
nodes, all rik become equal to the same r. Nevertheless,
thanks to the dependency of r on the normalization of the
inputs and the fan-in of the node, it is possible to start the
training with the same γ = 0.2 for every reservoir under
test.

A. Changing the criterion to minimize

Once one follows a gradient descent approach, there is no
need to stick to a mean squared error function anymore. Any
other differentiable error function is acceptable, provided it
will give rise to trained networks whose outputs approximate
posterior class probabilities. In [11] it is shown that both the
mean squared error (MSE) and cross-entropy (CE) do meet
that condition. If yi is the computed and di the desired output
of node i at some time, the MSE and CE criteria are given
by

cMSE =
1

2

Ny∑
i=1

(yi − di)2 (7)

and

cCE = −
Ny∑
i=1

[di ln (yi) + (1− di) ln (1− yi)] (8)

respectively. Obviously, the CE criterion can only be used
in combination with outputs that are confined in the interval
(0,1).

B. Changing the activation function

Here, the standard non-linear mapping of a node activation
ai to a node output yi is the logistic function

yi = f(ai) =
1

1 + e−ai
(9)

However, since the training circumstances are never ideal,
the outputs of the trained network will not be exact posterior
probabilities [11]. Hence it is often suggested to use a soft-
max node defined by

yi = f(ai) =
eai∑n
j=1 e

aj
(10)

that at least guarantees outputs with a sum of one.

C. Performance issues

Obviously, non-linear nodes call for an iterative training
and the training time will be proportional to the number of
iterations that are required to converge to a good solution.
On the other hand, the time per iteration and the memory
requirements are only proportional to the reservoir size and
to the number of outputs, and the latter is normally much
smaller than the reservoir size. This makes the method more
scalable to higher reservoir sizes.

D. Smart initialization of the weights

Since the iterative training normally starts from randomly
created weights, it may take a lot of iterations for the training
to converge. However, as long as the reservoir size permits
us to apply the normal linear readout training, we can use
the solution of that method to bootstrap the iterative on-line
training. This approach should lead to faster convergence
and reduce the chance of getting stuck in a ‘poor’ local
optimum.

Simply taking over the weights resulting from the linear
training would be an option, but this would lead to non-
linear outputs spanning only a part of the output range from
0 to 1. Therefore, we propose to modify the weights so that
each linear activation ai is transformed to a new activation
âi = g ai+a0 which has a broader value range. To estimate
proper factors g and a0, we first measure a+ as the mean
(over all training frames) of the linear readout corresponding
to the true class of the frame. Likewise, we measure a−
as the mean (over all training frames and false classes) of
the linear readouts corresponding to a false class. Based on
these values, we introduce P1 and P0 as the probabilities
of ai ≥ a+ and ai ≤ a− indicating that i is the true class.
If fout represents the activation function of the non-linear
readout, then g and a0 are determined so that

y = fout(g a+ + a0) = P1

y = fout(g a− + a0) = P0 (11)

In the case of a logistic activation function, one obtains that

a0 =
1

2

(
ln

P1

1− P1
+ ln

P0

1− P0
+ ga+ + ga−

)
g =

1

a+ − a−

(
ln

P1

1− P1
− ln P0

1− P0

)
(12)

Once these transformation parameters are available, it is
easy to convert the original weights wik and w0i to the new
weights ŵik and ŵi0 because

âi = g ai + a0

=

N∑
k=1

gwik xk + gwi0 + a0

=

N∑
k=1

ŵik xk + ŵi0 (13)



IV. EXPERIMENTAL EVALUATION

In the case of speech recognition we are always in the
situation that we have a lot of training examples at our
disposal, but that the labels of these examples are not always
totally reliable. It is under these circumstances that we want
to optimize our reservoir systems.

A. Experimental conditions

All training experiments presented in this section aim
at maximizing the accuracy of a frame-wise classification
(frames are slices of speech) in terms of the basic sounds
of American English (called phones). The trained systems
will later on be embedded in a phone recognizer that aims
to find the phone sequence that was spoken, without having
prior knowledge of the length of that sequence.

The data set is the well-known TIMIT database [12].
We perform fully supervised training with the hand-labeled
training targets provided with the recordings and we discern
51 phones. The data is split into 2.80 hours of training
data (414 speakers), 0.32 hours of development data (48
speakers), and 0.16 hours of test data (24 speakers). There
are approximately one million training vectors and the test
set is commonly referred to as the core test set.

We use the basic system architecture presented in [6],
but in order to save time, we only consider a single-layer
implementation (only one reservoir). In the phone recog-
nition experiments, the decoder first converts the readouts
to likelihoods, as explained in [5], and then searches for the
most likely phone string with the help of a phonetic bi-gram
language model. The reservoir inputs are the traditional 39-
dimensional MFCC vectors that are used in most speech
recognition systems. The network parameters (spectral ra-
dius etc.) are set to the values that were also used in [6].

In order to make fair comparisons between methods, the
same reservoirs are used in all experiments conducted for
a given reservoir size. Classification accuracy is expressed
by means of a frame error rate (FER) measured on the
development set. Phone recognition accuracy is expressed
by means of a phone error rate (PER) measured on the core
test set.

B. Regularization

As the training examples are not entirely reliable, they
may be self-regulating, and hence not require any explicit
regularization like the one introduced by ridge regression.
We therefore examined the effect of the regularization
parameter ε in Equation 4 on the FER measured on the
development set. From Table I it is clear that the self-
regularization hypotheses holds and that we can use the pure
MSE and CE criteria for our experiments with non-linear
output nodes as well.

Table I
FRAME ERROR RATE (FER) USING RIDGE REGRESSION WITH

DIFFERENT REGULARIZATION TERMS FOR TWO SIZES OF RESERVOIRS

regularization term 625 2500

ε = 10−5 42.54% 36.79%
ε = 10−7 42.27% 36.36%
ε = 10−9 42.27% 36.36%

no regularization 42.27% 36.36%

C. Logistic output nodes

Before starting to work with the on-line training of non-
linear readout nodes, we first verified whether the on-line
training of linear readout yields a solution that has about the
same accuracy as the closed-form solution of Equation 5.
A test with a reservoir of 625 nodes confirmed that. We
therefore assume that differences between systems with
linear and non-linear readout nodes will be due to the choice
of the node type and not to differences in the training
procedure.

In subsequent experiments, we tested logistic nodes
in combination with reservoirs of 625, 1250, 2500 and
5000 nodes. The training started from randomly initialized
weights and stopped when the FER on the development set
did not drop by more than 0.1% over the last 5 iterations.
In Figure 3 the FERs obtained for the different systems are
compared with those obtained with systems employing linear
readouts.
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Figure 3. Evaluation of the frame-wise classification error rate (FER)
using linear and non-linear readout nodes. In case of non-linear readouts,
the initial output weights were either randomly or smartly initialized.

It can be seen that the logistic nodes (with randomly
initialized weights) clearly outperform the linear nodes for
small reservoir sizes, but the benefit seems to vanish when
the systems get larger. For a reservoir size of 5000 the linear
nodes are even superior to the non-linear ones.

D. Smart weight initialization

We anticipated that the proposed smart weight initializa-
tion might provide a better starting point for the iterative
training. We therefore applied the procedure described in
Section III with parameters that were retrieved from the
outputs of the linear readout nodes on the training data.



Figure 3 (right bars) shows that smart initialization always
leads to readouts that outperform the linear ones, even for
large reservoir sizes. In terms of training time, Figure 4
shows how the FER evolves in the course of the training.
Especially for large reservoir sizes, the improvement is
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Figure 4. Evaluation of the frame-wise classification error rate (FER) for
logistic regression using random and smart weight initialization.

combined with a faster convergence of the training. This
complies with the fact that the non-linearities are expected
to have a larger impact when the reservoir is smaller, and
hence, that for smaller systems the weights derived from the
linear solution are further away from the final weights.

E. Error criteria

Figure 5 shows the classification accuracies that can be
reached after smart initialization and subsequent training
with MSE or CE as the error criteria. It is clear that cross-
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Figure 5. Evaluation of the frame-wise classification error rate (FER) using
MSE or Cross-Entropy as cost-function during the logistic regression.

entropy persistently outperforms MSE for all reservoir sizes.
We therefore maintain CE as the error criterion in the
forthcoming experiments. Another finding is that CE-based
training always takes a few more iterations than MSE-based
training to converge. This is owed to the larger mismatch
between the MSE criterion that is involved in the weight
initialization process and the CE criterion that is used during
training.

F. Activation functions

In a last training experiment, the classification accuracies
reached after training with logistic and soft-max nodes was
evaluated. The error criterion was CE and the weights were
randomly initialized here. The latter was done in order to
avoid any positive bias of the on-line training towards the
logistic function. We investigated systems with 625, 1250
and 2500 nodes and found that the soft-max nodes yield an
inferior classification performance (0.5% to 1% absolute) in
all examined cases.

G. Phone recognition

Since we are not interested in frame-wise classification
but in true phone recognition, we have also assessed the
phone error rates (PER) of various systems on the core test
set (see Table II). The PER measures substitutions, insertions
and deletions between the recognized and the correct phone
sequence. As it is done traditionally, errors are obtained
after having mapped all recognized and correct phones to
39 phone classes first.

Table II
PHONE ERROR RATES (PER) FOR DIFFERENT INVESTIGATED SYSTEMS

model reservoir size
type cost wout 625 1250 2500 5k 10k 20k

linear MSE - 41.6% 38.2% 34.9% 32.4% 30.5% 29.4%
logistic MSE random 36.7% 35.3% 34.8% 33.9% - -
logistic MSE smart 36.0% 34.0% 33.7% 30.2% - -

logistic CE random 34.0% 32.6% 31.7% 31.1% - -
logistic CE smart 33.9% 31.9% 31.4% 29.2% 29.6% -

soft-max CE random 35.2% 34.1% 31.8% - - -

The PERs correlate very strongly with the FERs. They
confirm that CE outperforms MSE as an error criterion and
that smart initialization leads to higher recognition rates. The
table also confirms that smart initialization is less effective
when CE is used and that the soft-max function does not
help for sequence decoding.

For systems of the same size we observe that the non-
linear system outperforms the linear system by 10 – 18%
relative. On the other hand, the non-linear readout accuracy
saturates at the same value as the linear readout accuracy.
Hence, the only benefit of nonlinear readouts seems to be
that they can achieve the maximum attainable accuracy at
a much lower reservoir size. In the next section we discuss
the positive consequences of this.

H. Needed Resources

From Table II it follows that non-linear systems with
N reservoir nodes compete well with linear systems with
4N reservoir nodes. Taking this rule into account, we can
analyze the training time as a function of the attainable
accuracy so to speak. Table III then reveals that the iterative



Table III
TRAINING TIME (ON A SINGLE CORE 3GHZ CPU) AS A FUNCTION OF

ACCURACY FOR LINEAR AND NON-LINEAR READOUTS. FOR
NON-LINEAR NODES WE DISTINGUISH BETWEEN RANDOM (NO
BRACKETS) AND SMART WEIGHT INITIALIZATION (BRACKETS)

needed nodes training time (in h)

non-linear linear non-linear linear

1250 5000 17 [18] 3
2500 10000 35 [36] 13
5000 20000 70 [73] 52
7000 28000 97 [103] 102
10000 40000 140 [153] 214
20000 80000 280 [332] 856
40000 160000 560 [764] 3424

training of the non-linear readouts (without or with smart
initialization) takes less time than the solution of the linear
regression problem as soon as the reservoir size exceeds
a threshold of 7000 nodes1. Hence, if we want to develop
reservoir systems on a much larger database than TIMIT, the
accuracy will most probably saturate only for reservoir sizes
above that threshold, where the non-linear systems show an
advantage.

V. CONCLUSIONS

We have shown that non-linear readout nodes in combi-
nation with an on-line learning algorithm are an interesting
alternative to the linear nodes used in traditional Reservoir
Computing. The use of logistic nodes in combination with
a Cross-Entropy error criterion leads to a significant im-
provement (10 – 18% relative) attainable with a predefined
reservoir size.

Non-linear readout nodes seem to be more powerful
classifiers than the linear nodes, especially when the size of
the reservoir is constrained. Only when the reservoir is made
big enough, linear and non-linear classifiers can reach the
same level of accuracy. However, the computation time that
must be spent to reach this level can be quite different for the
two cases. The main benefit of the non-linear solution seems
to be that it requires less reservoir nodes to attain a certain
accuracy. Hence, it permits to reduce the computation load
during real operation and it offers better perspectives for the
development of speech recognition systems on much larger
benchmarks than the TIMIT benchmark that was used here.
Systems with linear readouts and a reservoir of e.g. 40,000

1The CPU times for the very large reservoir sizes are no actual measure-
ments but extrapolations that could be made on the basis of our knowledge
of how the computational load depends on the reservoir size.

nodes cannot be solved with linear regression anymore, due
to the very large squared matrix that has to be inverted. But
competitive systems with non-linear readout nodes stay well
within reach.

One of our priorities for the future is to prove our
hypotheses that non-linear readouts will result in better
recognition accuracy on larger benchmarks.
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