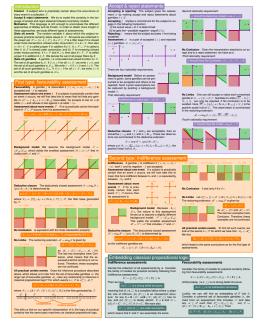
Modelling practical certainty and its link with classical propositional logic

Arthur Van Camp and Gert de Cooman

Ghent University, SYSTeMS

Arthur.VanCamp@UGent.be, Gert.deCooman@UGent.be

Modelling practical certainty and its link with Classical propositional logic Arthur Van Camp and Gert de Cooman LINIVERSITEIT SYSTeMS research group. Ghent University. Belgium (Arthur. VanCamp. Gert. deCooman) FUGent. be



Introduction

Introduction

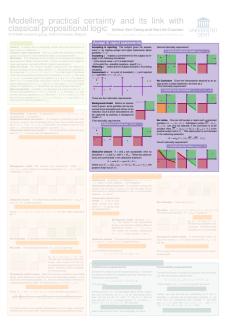
Modelling practical certainty and its link with classical propositional logic Arthur Van Camp and Gert de Cooman

Introduction

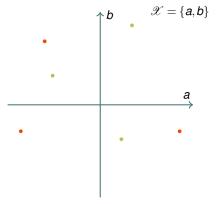
Subject who is practically certain about every event in \mathcal{T} .

Model this believe with accept and reject statement-based uncertainty models.

Investigate which conditions to impose on \mathcal{T} in order to have a coherent belief model.



The subject's assessment \mathscr{A} consist of two sets: his set of accepted gambles \mathscr{A}_{\succeq} and his set of rejected gambles \mathscr{A}_{\succeq} .

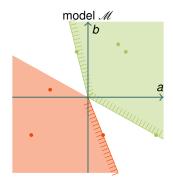


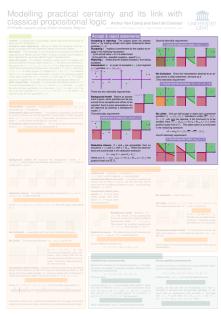




- Indifference to status quo
- Deductive closure
- No Confusion
 - No Limbo

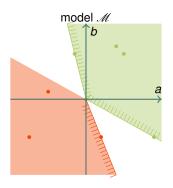
- Indifference to status quo
- Deductive closure
- No Confusion
- No Limbo





There are four rationality criteria.

- Indifference to status quo
- Deductive closure
- No Confusion
- No Limbo



We can derive other sets of gambles.

We can derive other sets of gambles.

We can derive other sets of gambles.

► A gamble *f* is favourable if

$$f \in \mathcal{M}_{\triangleright} := \mathcal{M}_{\succeq} \cap -\mathcal{M}_{\prec}.$$

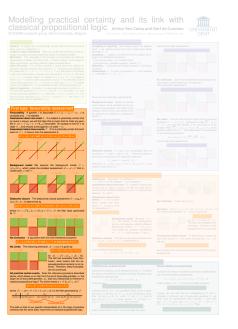
We can derive other sets of gambles.

- ▶ A gamble f is favourable if $f \in \mathcal{M}_{\triangleright} := \mathcal{M}_{\succ} \cap -\mathcal{M}_{\prec}$.
- ▶ A gamble f is indifferent if $f \in \mathcal{M}_{\simeq} := \mathcal{M}_{\succeq} \cap -\mathcal{M}_{\succeq}$.

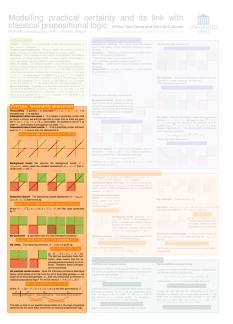
First type: favourability

assessment

First type: favourability assessment



First type: favourability assessment

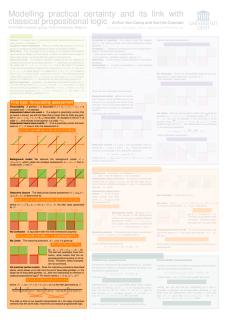


If a subject is practically certain that an event A will occur, we will take this to mean that

$$\mathscr{A}_{\rhd}^{\mathsf{A}} \coloneqq \{ -\mathbb{I}_{\mathsf{A}^c} + \varepsilon \colon \varepsilon \in \mathbb{R}_{>0} \}$$

is favourable.

First type: favourability assessment



If a subject is practically certain that an event A will occur, we will take this to mean that

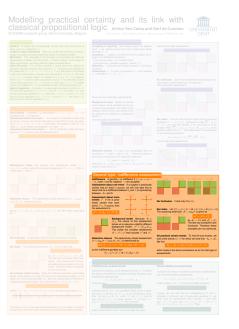
$$\mathscr{A}^{\mathsf{A}}_{
hd} \coloneqq \{ -\mathbb{I}_{\mathsf{A}^c} + arepsilon \colon arepsilon \in \mathbb{R}_{>0} \}$$

is favourable.

If a subject is practically certain that every event in $\mathscr T$ will occur, we will take this to mean that

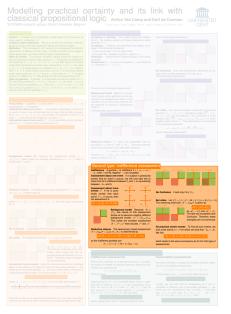
$$\mathscr{A}_{\rhd} := \{ -\mathbb{I}_{A^c} + \varepsilon \colon A \in \mathscr{T}, \varepsilon \in \mathbb{R}_{>0} \}$$

is favourable. His assessment is $\mathscr{A} = \langle \mathscr{A}_{\triangleright}; -\mathscr{A}_{\triangleright} \rangle$.



If a subject is practically certain that an event A will occur, we will now take this to mean that he is indifferent between \mathbb{I}_A and 1, or equivalently, between \mathbb{I}_{A^c} and 0. $\Rightarrow \mathscr{A}_{\widetilde{A}^A}^{\prime A} := \{\mathbb{I}_{A^c}\}$ is indifferent.

$$\Rightarrow \mathscr{A}'^{A}_{\succeq} = \{ \pm \mathbb{I}_{A^{c}} \}$$
 is acceptable.



If a subject is practically certain that an event A will occur, we will now take this to mean that he is indifferent between \mathbb{I}_A and 1, or equivalently, between \mathbb{I}_{A^c} and 0.

$$\Rightarrow \mathscr{A}_{\simeq}^{\prime A} := \{ \mathbb{I}_{A^c} \}$$
 is indifferent.

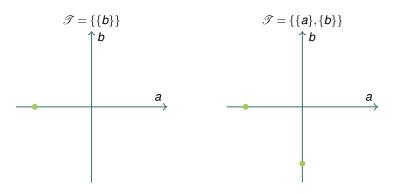
$$\Rightarrow \mathscr{A}'^{A}_{\succeq} = \{ \pm \mathbb{I}_{A^{c}} \}$$
 is acceptable.

If a subject is practically certain that every event in \mathcal{T} will occur, we will now take this to mean that

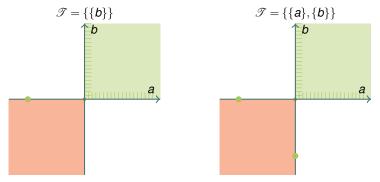
$$\mathscr{A}'_{\succeq} := \{ \pm \mathbb{I}_{A^c} \colon A \in \mathscr{T} \}$$

is acceptable. His assessment is $\mathscr{A}' = \langle \mathscr{A}'_{\succ}; \emptyset \rangle.$

Assessment A'



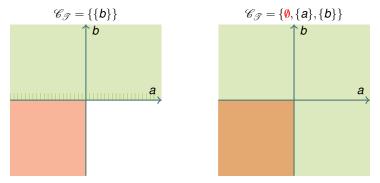
Smallest assessment that includes the background model $\mathscr{B}' = \mathscr{A}' \cup \langle \mathscr{L}_{>0}; \mathscr{L}_{<0} \rangle$



First rationality requirement Indifference to status quo: $0 \in \mathcal{L}_{\geq 0}$.

Deductive closure

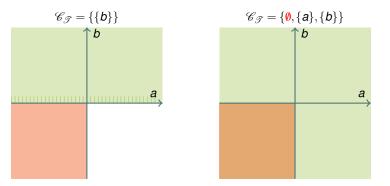
$$\mathscr{D}' = \left\langle \mathsf{posi}\,\mathscr{B}'_{\succeq}; \mathscr{B}_{\prec} \right\rangle \, \text{with posi}\, \mathscr{B}'_{\succeq} = \left\{ f \in \mathscr{L} : \, (\exists B \in \mathscr{C}_\mathscr{T}) \mathbb{I}_B f \geq 0 \right\}$$



Second rationality requirement: \mathcal{D}' should be Deductive Closed.

Deductive closure

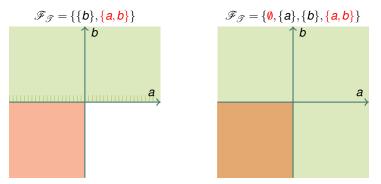
$$\begin{split} \mathscr{D}' &= \left\langle \mathsf{posi}\,\mathscr{B}'_{\succeq}; \mathscr{B}_{\prec} \right\rangle \, \mathsf{with} \, \, \mathsf{posi}\,\mathscr{B}'_{\succeq} = \left\{ f \in \mathscr{L} : \, (\exists B \in \mathscr{C}_{\mathscr{T}}) \mathbb{I}_B f \geq 0 \right\} \\ &\quad \mathsf{Here}, \, \mathscr{C}_{\mathscr{T}} \coloneqq \left\{ \bigcap_{k=1}^n \overline{A}_k \colon n \in \mathbb{N}, A_k \in \mathscr{T} \right\} \\ &\quad \mathsf{is} \, \, \mathsf{the} \, \, \mathsf{filter} \, \, \mathsf{base} \, \, \mathsf{generated} \, \, \mathsf{by} \, \, \mathscr{T}. \end{split}$$



Second rationality requirement: \mathcal{D}' should be Deductive Closed.

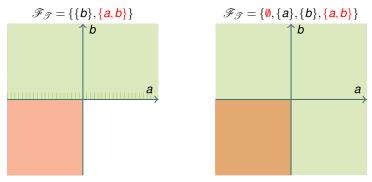
Deductive closure

$$\begin{split} \mathscr{D}' = \left\langle \mathsf{posi}\,\mathscr{B}'_{\succeq}; \mathscr{B}_{\prec} \right\rangle \text{ with posi}\, \mathscr{B}'_{\succeq} = \left\{ f \in \mathscr{L} : (\exists B \in \mathscr{C}_{\mathscr{T}}) \mathbb{I}_B f \geq 0 \right\} \\ \text{Here, } \mathscr{F}_{\mathscr{T}} \coloneqq \left\{ B \in \mathscr{P} : (\exists C \in \mathscr{C}_{\mathscr{T}}) C \subseteq B \right\} \\ \text{is the filter generated by } \mathscr{T}. \end{split}$$



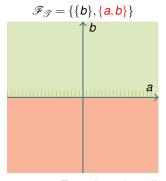
Second rationality requirement: \mathcal{D}' should be Deductive Closed.

No Confusion: $\mathscr{D}'_{\succ} \cap \mathscr{D}'_{\prec} = \emptyset$



Third rationality requirement: No Confusion $\Leftrightarrow \emptyset \notin \mathscr{C}_{\mathscr{T}}$.

No Limbo: $(\overline{\mathscr{D}_{\prec}} - \mathscr{D}_{\succeq}) \setminus \mathscr{D}_{\prec}$ should be rejected



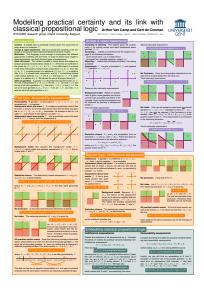
Fourth rationality requirement: No Limbo.

Embedding classical propositional logic

Embedding classical propositional logic

We show that the language of our models for practical certainty essentially equals the language of filters.

Conclusion



Be welcome at our poster!