

Ultrafast DPSS laser interaction with thin-film barrier stacks

Van Steenberge Geert

Fledderus Henri, Hoegen Thomas, Naithani Sanjeev, Schaubroeck David, Mandamparambil Rajesh, Yakimets Iryna

contact: geert.vansteenberge@elis.ugent.be

An Open-Innovation Initiative by Limec and

Overview

Introduction

Facilities

Results

Conclusions

An Open-Innovation Initiative by (imec and

Introduction: thin-film laser patterning

• Example: typical OLED layers optical properties

An absorption coefficient of 1.E+5 cm⁻¹ corresponds to a beam penetration depth of 100 nm

LOPE-C 2013 Geert Van Steenberge

LOPE-C 2013 Geert Van Steenberge

Example: PEDOT:PSS and LEP removal from barrier foils

KrF Excimer laser (248 nm)

250

Ablation of SiN layer of barrier

Holst Centre

Ablation of LEP and PEDOT on SiN barrier

250

Introduction: organics patterning using Excimer lasers

- Example: PEDOT:PSS and LEP removal from barrier foils
 - KrF Excimer laser (248 nm)

Convenient process
window for organics
patterning
Clean removal of
PEDOT / LEP
No debris or flakes are
observed

Organic Layer 1

Organic Layer 2

Barrier

PEN

Detailed surface analysis after laser patterning. Applied Surface Science 2013 (article in press)

Flexible OLED devices incorporating Excimer laser patterning have been demonstrated. *Applied Optics 2013 (under review)*

© Holst Centre

Introduction: inorganics patterning using Excimer lasers

Example: (inorganic) barrier layer patterning on metal contacts

LOPE-C 2013 Geert Van Steenberge

Introduction: inorganics patterning using DPSS lasers

• Example: (inorganic) barrier layer patterning on metal contacts

An absorption coefficient of 1.E+5 cm⁻¹ corresponds to a beam penetration depth of 100 nm

OVERVIEW

Introduction

Facilities

Results

Conclusions

Ultrafast laser set-ups at TNO and imec

Coherent ps laser (Talisker) TimeBandwidth ps laser (Duetto) Amplitude Systems fs laser (Satsuma)

OVERVIEW

Introduction

Facilities

Results

Conclusions

Results SiN on MAM / ps 355nm

• Step 1: power scan / single pulse

- To determine the ablation threshold of the SiN on MAM
- Find threshold for damage of the sub layers
- To see the behavior of ablation mechanism(s) as function of laser pulse energy

Threshold SiN removal 60 mJ/cm²

Photo-chemical assisted ablation Laser fluence higher than 90 mJ/cm²

0

Results SiN on MAM / ps 355nm

- Step 2: photomechanical process optimization
 - Complete SiN layer removal without introducing damage to the underlying layer
 - Single shot process seems to be instable
 - Improve laser patterning "process window" by tuning the pulse to pulse distance (P2P)

SiN ΜΑΜ substrate

Results SiN on MAM / ps 1064nm

• Step 1: power scan / single pulse

- To determine the ablation threshold of the SiN on MAM
- Find threshold for damage of the sub layers
- To see the behavior of ablation mechanism(s) as function of laser pulse energy

ΜΑΜ

substrate

Results SiN on MAM / ps 1064nm

- Step 2: photomechanical process optimization
 - Complete SiN layer removal without introducing damage to the underlying layer
 - Large particles: cleaning method needed: e.g. N₂ blowing

Results SiN on ITO / ps 355nm

• Step 1: power scan / single pulse

- To determine the ablation threshold of the SiN on ITO
- Find threshold for damage of the sub layers
- To see the behavior of ablation mechanism(s) as function of laser pulse energy

Results SiN on ITO / ps 1064nm

• Step 1: power scan / single pulse

- To determine the ablation threshold of the SiN on ITO
- To see the behavior of ablation mechanism(s) as function of laser pulse energy
- Find threshold for damage of the sub layers

Discussion

• Not always beneficial to select a laser wavelength which shows the highest absorption for the (inorganic) layer to be removed.

An absorption coefficient of 1.E+5 cm⁻¹ corresponds to a beam penetration depth of 100 nm

LOPE-C 2013 Geert Van Steenberge

Overview

Introduction

Facilities

Results

Conclusions

An Open-Innovation Initiative by (imec and

Conclusions

• Ultrafast DPSS laser interaction with thin-film barrier stacks

- Influence of laser wavelength and pulse energy on the ablation mechanism
- Photomechanical versus photochemical assisted thin-film removal

Acknowledgement

Fledderus Henri, Mandamparambil Rajesh, Yakimets Iryna Hoegen Thomas

Naithani Sanjeev, Schaubroeck David

An Open-Innovation Initiative by Limec and