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Characteristics of the acoustic emission during 
horizontal single grit scratch tests: Part 2 
classification and grinding tests 
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*Corresponding author 

Abstract: The second part of this work follows on the work carried out in  
Part 1 where the investigations were made between the grinding phenomena: 
cutting, ploughing and rubbing. The demarcation between each of the 
phenomenon was identified from Acoustic Emission (AE) signals being 
converted to the frequency-time domains using Short-Time Fourier Transforms 
(STFTs). Other digital signal processing techniques were used and discussed; 
however, the more update and successful tests only required STFTs. This part 
of the paper looks at the classification using both Neural Networks (NNs) and 
fuzzy-c clustering/Genetic Algorithm (GA) techniques. After the cutting, 
ploughing and rubbing gave a high confidence in terms of classification 
accuracy, 1 µm and 0.1 mm grinding test data were applied to the classifiers. 
Interesting output results sufficed from both classifiers signifying a distinction 
that there is more cutting utilisation than both ploughing and rubbing as the 
interaction between grit and workpiece become more in contact with one 
another (measured depth of cut increases). 

Keywords: single grit scratch; AE; acoustic emission; feature extraction; NNs; 
neural networks; fuzzy-c clustering and genetic algorithms. 
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1 Introduction 

As mentioned in Part 1, elastic waves such as that emitted by Acoustic Emission  
(AE) can be used for monitoring many machining processes and/or material  
non-destruction tests (Chen and Xue, 1999; Coman et al., 1999; Holford, 2000; Liu et al., 
2005; Webster et al., 1994). Once the raw extracted AE has been transformed into the 
time-frequency domain it can then be presented to the classifier. Here the work looks at 
the Single Grit (SG) scratch classification of cutting, rubbing and ploughing using two 
classifiers: Neural Networks (NNs) and fuzzy-c clustering/Genetic Algorithm (GA).  
The characteristics of cutting, ploughing and rubbing through both material profile 
measurements and digital signal processing of AE extracted signals were discussed in 
Part 1 of this paper. It was found in the Part 1 that the Short-Time Fourier Transforms 
(STFTs) results of AE analysis can represent different characteristics of cutting, 
ploughing and rubbing in grinding, which may be used as input parameters for the 
classification. The classification of the three phenomenons is of particular importance  
to the fundamental understanding of grinding mechanics. From the accurate classification 
of cutting, ploughing and rubbing for SG tests it was then possible to classify 1 µm and 
0.1 mm grinding wheel cuts in terms of the three phenomena. 

The main investigation objectives of this part of the paper are: 

• classify cutting, ploughing and rubbing in grinding with 1 µm and 0.1 mm 
cutting depths 

• verify the classification process using both training, test and verification data 

• compare two classification techniques (NNs and fuzzy-c clustering/GA). 

The work carried out in this paper is the first of its kind in that AE signal extracted data  
is classified in terms of cutting, ploughing and rubbing for single grinding pass.  
In addition by using an optimised GA fuzzy clustering algorithm for non-linear 
classification is the first seen in literature and therefore considered a novel classification 
approach. 

2 NNs for classification of cutting, ploughing and rubbing in grinding 

A large number of researchers have reported the application of using NN models for the 
classification of phenomena of interest when applied to tool condition monitoring  
(Ozel and Karpat, 2005; Sick, 2002). A feed-forward NN model was used with the  
back-propagation learning strategy to provide the segregation of data (Rumelhart et al., 
1986). Commonly, NNs are used for pattern recognition in image analysis or sound 
waves in signal analysis. The NN consists of a complex interconnection of units which 
are otherwise known as nodes or neurons. The general layout for a NN consists of a set 
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of neuron layers connected together through complex connections; this layout and 
features is known as the network architecture. 

A two-layer NN model can map the basic logic functions of OR, AND and NOT 
however, a hidden layer is required when mapping non-linear functions such as that  
of exclusive-OR or the much complex functions such as the data presented by STFT 
signal processing techniques. This type of data is not only non-linear but also  
n-dimensional. The basic logic function network classifiers use a linear data separation 
approach however with the separation of much larger data sets there is need for a more 
dynamic learning system that takes all the information into consideration and maps  
the data in both parallel and gradient descent segregation fashion such as that seen by the  
back-propagation feed-forward network (McCulloch and Pitts, 1943). A Multilayer 
Perceptron (MLP) utilising the back-propagation learning rule is presented in Figure 1 
for illustration purposes. 

Figure 1 A four input NN with one hidden layer 

 

As displayed in Figure 1 each of the inputs P1–P4 are multiplied by a changing  
weight function and are associated to a target vector, in this example a1–a2, respectively. 
This is called the associations of input–output pairs and provides the supervised training 
data (test and verification data set have both data that has been seen by the network in 
training (supervised) and data that has not been seen (testing the generalisation of the 
network). Each neuron has a summation function which sums up the weighted (e.g. 1

1,1w  

and 1
1,2w  to 2

,n nw  reference to Figure 1) and input bias (bias input variable) connections. 

The transfer function (for non-linear problems a differential transfer function; such as  
Tan-sigmoid is used) is required to map the non-linear input–output relations which are 
obtained for each neuron and updated in an iterative fashion towards the desired target 
set. Back-propagation is so-called as the weights are updated from the error between the 
actual output and the desired output which in short is from the back to the front.  
This method segregates the different classes based on the supervised training data  
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given to the NN. The summation of weights and bias values are multiplied by a 
differential transfer function to give a neuron output. 

The output of each neuron is a function of its inputs. Specifically, output of the  
jth neuron is any layer is described by the following equations: 

( )j ijU Pi w= ×∑  (1) 

( )i j ja F U t= +  (2) 

For every neuron, j, in a layer, each of the i inputs, Xi to that layer is multiplied by  
a previously established weight, wij. These are all summed together, resulting in the 
internal value of the operation, Uj. This value is then biased by a previously established 
threshold value tj, and sent through an activation function, F (Sigmoid or Linear) giving 
the NN output; ai. 

Equation (3) describes the output error obtained from each neuron. 

( )2

1

1ME i i
i
t a

Ω

=

= −
Ω∑  (3) 

where ME is the mean squared error, ia  (a1 and a2 in the example displayed by Figure 1) 

is the output of the network corresponding to ith input P1–P4 looking at the example 
displayed in Figure 1. The error term of network is given from i it a( )− where ti is the 

target vector or the desired value for given input vectors P1–P4. The T is used to 
transpose the matrix to ensure both matrices are multiplied together to get a Sum Squared 
Error (SSE) output. The error function can be applied to the NN in a batch training 
fashion at the end of data presentation or sequentially after each input–output pair. 

For the back-propagation algorithm the weight and bias update equations are  
as follows: 

MEk
ij k

ij

w
w

α ∂
∆ = −

∂
 (4) 

MEk
i k

i

b
b

α ∂
∆ = −

∂
 (5) 

where α is the learning rate, which has a trade-off in value to ensure it is small enough to 
gain a true convergence but large enough to separate the data space in adequate time. 
Equations (4) and (5) are iteratively changed across the network along with other 
functions to provide learning sensitivity. This process of weight and input, and error 
calculation propagates through the NN to provide the segregation rules which separates 
the data according to class (target vector). The b is a bias term used to influence the 
training weights and for NN training. 

3 Clustering method for classification of cutting, ploughing  
and rubbing in grinding 

Another pattern recognition technique used for classification is through fuzzy-c 
clustering (Li and Xiaoli, 1998; Liu et al., 2005). Pattern recognition can select features 
of interest based on all data features. The technique of fuzzy clustering provides rules in 
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the form of distance measurements that segregate the different cluster sets from each 
other, in this case; the cutting (C), ploughing (P) and rubbing (R). 

Clustering techniques has emerged from work carried out in statistical probability 
(Cuevas et al., 2001; Hartigan, 1985). When looking at real world phenomena most cases 
are not finite and instead possess a lot of in between values such as that seen with fuzzy 
sets. Fuzzy-c mean algorithm is an iterative technique for clustering data sets in a soft 
rule set fashion. It is a technique for grouping data and finding structures in data. 
Essentially clustering techniques use a distance measure to segregate like data from other 
presented data into classes or sets (clusters). 

There are two main types of clustering techniques; the conventional way of clustering 
is through hard clustering where partitions are formed representing each pattern  
similar to a threshold measure used for preprocessing the NN outputs. The difference in 
hard clustering is the data belongs to only one cluster. With non-linear data there is no 
sharp classification between clusters, especially at the boundaries; this is why fuzzy 
clustering is better as it can assign clustering between 0 and 1 and not just one fixed 
value, therefore giving cases for both cluster sets. The classification here is based on the 
set the input data has more similarities to when compared with the other and is known as 
soft clustering. 

Figure 2 displays a block diagram of the fuzzy-c/GA is based on work carried out by 
(Liu et al., 2005) clustering of the cutting, ploughing and rubbing. The first step in this 
process is to convert the STFT vectors into a fuzzy similarity matrix defining the 
relations of similarity. The next process is to then define the fuzzy variable similarity 
matrix which evaluates each coefficients ijr  degree of membership between the element i 

and j. Following on, the cluster centres are determined, the centres segregate and 
categorise one cluster from another. The centre cluster is the representing function of a 
particular cluster. Input test data that has a membership close to a particular centre than 
other centres mean that input data belongs to that centre. 

Figure 2 Block diagram of the C, P and R classification 
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Let 1 2{ , , , }, ,mX X X X X V= … ⊂  where X1–Xm are feature vectors make up the total 

feature matrix set and 2( , , , )i il i inX X X X V= … ∈  is a feature vector (element of total 

feature matrix set V); Xij is the jth feature of individual Xi the feature matrix are made  
up from 1 to n feature vectors. To ensure there is normalisation across the feature matrix, 
Equation (6) is used which calculates the normalised mean for each input value divided 
by the variance. 

( )
and ij ij

ij j ij ij
i

x x
x m X x

σ

′ ′−
′ ′′= =  (6) 

where 

( ) ( )
1/ 2

211 12 1

1 11

, , , 1 1max , and
n n

n
j i ij i ij i

j jj

X X X
m x x x x

X n n
σ

= =

…
′ ′ ′ ′= = = −∑ ∑  

The normalised feature matrix is then represented by the feature matrix below in 
Equation (7). 

11 12 1 1

21 22 2 2

1 2

1 2

, , , , ,

, , , , ,

                        
( )

, , , , ,

                      
, , , , ,

j n

j n

i i ij in

m m mj mn

x x x x

x x x x

X m n
x x x x

x x x x

′′ ′′ ′′ ′′… …⎡ ⎤
⎢ ⎥′′ ′′ ′′ ′′… …⎢ ⎥
⎢ ⎥
⎢ ⎥× =
′′ ′′ ′′ ′′… …⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥′′ ′′ ′′ ′′… …⎢ ⎥⎣ ⎦

 (7) 

The fuzzy similarity matrix is the next calculation required for the fuzzy clustering of  
the input data set. The similarity matrix uses a distance measure to show similarities 
within the matrix set. There are many distance functions available; however, fuzzy-c 
clustering uses Equation (8). The index of similarity is based on the minimum distance 
that equates to the maximum similarity. 

( )( )
( ) ( ){ }

n

ik i kj jk

ij
n n

ik i kj jk k

x x x x
m

x x x x

1

1/ 2
22

1 1

=

= =

− −
=

⎡ ⎤⎡ ⎤− −⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑ ∑
 (8) 

By using the correlation coefficient Equation (8) the normalised feature matrix is 
converted into a fuzzy proximity matrix M: 

11 12 1 1

21 22 2 2

1 2

1 2

, , , , ,

, , , , ,

                            
, , , , ,

                            
, , , , ,

j n

j n

i i ij in

m m mj mn

m m m m

m m m m

M
m m m m

m m m m

… …⎡ ⎤
⎢ ⎥

… …⎢ ⎥
⎢ ⎥
⎢ ⎥=

… …⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥… …⎢ ⎥⎣ ⎦

 (9) 
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The fuzzy proximity matrix M is then converted into a fuzzy similarity matrix KM  as the 
proximity relationship does not have enough similarities for fuzzy clustering to be 
carried out. From the using the fuzzy algorithm such as transitive closure, the fuzzy 
matrix M can be converted into the fuzzy similarity matrix MK. 

11 12 1 1

21 22 2 2

1 2

1 2

, , , , ,

, , , , ,

                        
, , , , ,

                        
, , , , ,

j n

j n

K

i i ij in

m m mj mn

m m m m

m m m m

M
m m m m

m m m m

… …⎡ ⎤
⎢ ⎥

… …⎢ ⎥
⎢ ⎥
⎢ ⎥=

… …⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥… …⎢ ⎥⎣ ⎦

 (10) 

( ) 2

1 1

min
m n b

m j i i j
j i

J x x cµ
= =

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑∑  (11) 

Looking at Equation (10), ijm  in the matrix Mk is the similarity between feature i and j. 

The maximum value of similarity is when i = j and the feature itself equates to 1. After 
ranking the features in the order of similarity values, it is then possible to segregate these 
features using the closest cluster distance membership function and distinguish the AE 
STFT data in terms of cutting, ploughing and rubbing phenomenon. The closest distance 
membership function of fuzzy-c clustering is based on the squared loss cost function  
(see Equation (11)) for each point. For Equation (11), xi is the samples (i = 1, 2,…, n), m 
is the number of known clusters, cj is the cluster centre point where (j = 1,2,…, m), µj(xi) 
is the fuzzy membership of sample xi to cluster j. The b, term if equals 1, tends to more 
towards k-means clustering, similar to city-block distance statistical measure and if b 
tends towards ∞ it becomes completely fuzzy similar to Chebyshev maximum distance 
clustering. If however the term b takes the value of 2 it is similar to the Euclidean 
distance technique which was used in this work. The fuzzy algorithm iterates through 
Equation (11) until it can no longer best fit the separation of one cluster from another. 

4 GA for classification of cutting, ploughing and rubbing in grinding 

The GA is also a biologically inspired technique that optimises the evolutionary process 
of living organisms. They were invented specifically to avoid getting a solution stuck in a 
local minimum and to cover as much of the solution space as possible. The essential 
feature of a GA (Johnson and Picton, 1995) is the group of chromosomes that contain the 
genetic information. The genetic information is in the form of strings which define a 
particular solution. For instance a six bit binary number would be represented by the 
following string and stored as a chromosome: 1 0 1 0 0 1. The GA randomly produces 
strings forming a population. Once there are a significant number of strings in the 
population, a fitness function is used to test whether a particular chromosome is used to 
influence a new population, or whether it is to be discarded. The better of these 
chromosomes is kept in the population for the next generation. Thus each successive 
population of chromosomes will have a greater cumulative fitness compared with its 
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predecessor. The fit chromosomes are then chosen for breeding; this then allows the fit 
chromosomes to influence the next population.  

The breeding mechanism is known as cross-over and can be seen from the example 
below: 

Parent 1 1 0 1 | 0 1 0  offspring 1 1 0 1 | 0 1 1 

Parent 2 1 1 0 | 0 1 1  offspring 2 1 1 0 | 0 1 0 

The result is two offspring chromosomes; combining the digits of the parents according 
to the cross-over point chosen (middle of the chromosome was chosen here). 

Another influencing factor on a population is mutation, this is where a point is chosen 
on the chromosome and that genetic material is changed, in this case inverted. Mutation 
only occurs on randomly selected chromosomes, this random feature is dependant on the 
mutation rate (higher the rate the more random mutation becomes). The example below 
will show mutation be applied to the 5th bit of offspring 1. 

Offspring 1  1 0 1 0 1 1 

  ↓ 
Mutated offspring 1 1 0 1 0 0 1 (5th bit inverted)  

The GA was used to interact with the fuzzy-c clustering set by searching the solution 
space with a Darwinian fitness approach. The GA would convert the best individual from 
a population (genotype function) into two variables (phenotype functions) being: the 
cluster number and the number of iterations. From the returned fitness value of the 
fuzzy-c clustering algorithm the GA can evaluate the best individual. The fuzzy-c 
clustering algorithm is executed for each best individual presented. If the fitness value is 
less than the fitness function returned it is discarded as genotype material for the next GA 
pass, otherwise it used in the next GA pass. By continually simulating the fuzzy-c 
clustering algorithm the best fitness gained would result as the given classifier. If the  
GA was not used the fuzzy-c clustering algorithm is less likely to gain the optimised 
cluster set. 

5 Experimental setup of horizontal SG scratch tests and grinding  
wheel tests 

The scratch test simulates the grinding chip formation where the associated extracted AE 
of grinding chip formation may then be investigated. The scratch tests can be carried out 
by feeding a rotating Al2O3 grit towards a flat horizontally placed workpiece (CMSX4) as 
described in the Part 1 of this paper. With a micron incremental grit in and out stroke, a 
scratch groove will be formed on the surface of the flat sample. The average scratch 
depth is about 1 µm, which is a typical value of grinding chip in high efficiency grinding. 
The scratching wheel rotational speed is 4000 rpm with a feed rate of 4000 mm/min.  
The depths of cut of grinding tests were 1 µm and 0.1 mm under down grinding 
condition. The depths of cut were measured from the height change of the workpiece 
before and after grinding, in addition both workpieces were measured with a Fogale 
Photomap inference microscope to confirm the interactions. For the grinding tests, the 
wheel rotational speed was maintained at 4000 RPM with a federate of 4000 mm/min to 
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compare like with like interaction. Both classification analysis and digital signal 
processing were carried out under the Matlab computing environment. 

6 NN classification of cutting, ploughing and rubbing 

The supervised training method uses three times larger than that of the examples used in 
both the test and verification data sets (in terms of vector numbers; 180 for training  
and 60, 60 vectors for training and verification data sets, respectively). The network 
verification test set similar to the test set albeit slightly different to ensure the network 
provides a good confidence when presenting its classifications. The classification 
accuracy is based on correct classification against misclassification data. The network 
momentum value was set to a high value to ensure the NN can search beyond localised 
minimum and stick to the minimum post near global minima. Table 1 lists the parameters 
used in the NN to classify the cutting, ploughing and rubbing phenomenon 

Table 1 NN parameters for NN classifications 

NN Parameters  Value 

hidden layers 2 
Input size STFT processed data: 207 neurons 
Transfer function for layer 1,2,3 Tan-sigmoid 
Transfer function for output layer Pure-linear  
Epochs 10,000 for (1)  Time: 37 min 
Learning rule Back-propagation 
Learning rate 0.1−9 

Momentum 0.9 
NN training performance 5.2423 × 10−31 
Training STFT: 148 equally applied as phenomenon cases 

Figures 3 and 4 represent both the NN test and test verification data sets. The STFT 
signal NN test results are very encouraging with an 87% unseen classification (out of 
total 60 test vector set) and overall network classification of 93%. To give further 
confidence (James, 1994; Peterson and Gerald, 1992), the STFT signal NN test 
verification results give an 83% unseen classification accuracy and total network 
accuracy of 92%. These two sets of results are conclusive when classifying SG cutting, 
ploughing and rubbing phenomenon; two sets of similar test data is used to check 
consistency of results. The training data was 148 cases which were considered sufficient 
for data generalisation of the NN. 

The next results present Hit 4, Hit 14 and Hit 15 of 1 µm grinding cuts and Hit 20 of 
the 0.1 mm grinding cut, respectively. In addition to the above, the third hit taken from 
the rubbing signal before Test 212 (Test 211) is also tabulated to show the classification 
of pure rubbing. Here a STFT of the hit data was taken from start of the hit AE profile to 
the finish. Table 2 represents the amount of hit data classified as cutting, ploughing or 
rubbing and the percentage amounts of cutting, ploughing and rubbing. Figure 5 displays 
the NN outputs starting with the top left as Hit 4, top right Hit 14 and bottom left Hit 15 
for a 1 µm grinding wheel cut. Bottom right displays the NN output for Hit 20 of a  
0.1 mm grinding cut. All grinding cuts had no coolant present. It is possible to see the 
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profile of cut from the NN outputs of Figure 5. Table 2 classifications used a rule based 
threshold system to gain a crisp cutting, ploughing and rubbing output the rule being; if 
greater than 2.5 then rubbing, if less than 2.5 and greater than 1.5 then ploughing and if 
less than 1.5 then its cutting phenomenon. T212 Hit 2 data is total hit data and not 
segments used for training and test (top row) 1 µm to 0.1 mm cuts are for grinding wheel 
passes and not SG scratch experiments (both NN and fuzzy-c/GA results). 

Figure 3 Displays the NN results for cutting, ploughing and rubbing test set 

 

Figure 4 Displays the NN results for cutting, ploughing and rubbing verification set 
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Table 2 Displays NN test vector outputs for grinding wheel cuts 

Test set NN 
cutting  

(C) 

NN  
ploughing (P) 

NN  
rubbing 

(R) 

Total 
vectors 

C %  
correct/

total 

P %  
correct/ 

total 

R %  
correct/ 

total 

Hits 1–23 
T211/T212 

17/20 18/19 21/21 60 27/33 30/32 35/35 

Hit 3 T211 
(rubbing) 

0 0 21 21 0 0 100 

Hit 2 T212  13 20 5 38 34 53 13 

Hit 4*  
(*1 µm cut) 

14 17 16 47 30 36 34 

Hit 14* 26 17 15 58 45 29 26 

Hit 15*  28 29 5 62 45 47 8 

Hit 20 0.1 
mm cut 

34 24 2 60 57 40 3 

Figure 5 Top left Hit 4, top right Hit 14, bottom left Hit 15 (1 µm cuts) and bottom right  
Hit 20 (0.1 mm cut) 
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Looking at Figure 5 and Table 2 further there appears to be more of a percentage of 
cutting for the more interaction between workpiece and grit. There is a higher percentage 
of cutting compared with ploughing and rubbing when the depth of cut is increased for 
grinding wheel passes (middle parts of the 1 µm cuts had greater depth of cuts when 
measured against the beginning and end grit hits – this is due to a greater surface area 
being present during the cut rather than at the start or end). With pure rubbing extracted 
signal there is hardly any interaction between grit and workpiece which is also displayed 
by Table 2 results. The NN SSE for the cutting, ploughing and rubbing tests was  
5.24 × 10−31 and the number of training epochs was 10,000. This NN engine was used 
throughout the applied hit data tests of 1 µm cuts and 0.1 mm cuts. The hit tests were 
applied to the NN engine that had already gained 93% classification accuracy from 
cutting, ploughing and rubbing tests and was considered a good score for applying the hit 
data tests. For instance; as the hits are classified from the 1st interactions (Hit 4) to the 
mid interactions (Hit 14 and Hit 15) appears to have a higher percentage of cutting. 
Certainly with a mid hit of a 0.1 mm depth cut there is a lot more cutting interaction and 
a lot less rubbing when compared to the 1 µm cuts (more so with Hit 4 than Hit 14 and 
Hit 15 as it is at the beginning of grit/scratch interaction). This signifies that cutting, 
ploughing and rubbing changes in ratio as there is more interaction between workpiece 
and grinding wheel (depth of cut increases therefore more grit interaction between 
material surface and grit). Note that AE of all depth cut hits were normalised to a 1 µm 
cut to compare the cutting, ploughing and rubbing training/test set. The normalisation is 
used to distinguish between different deforming phenomena. Looking at the lower right 
of Figure 5 the 0.1 mm cut has more crisp cutting classifications than with other 
displayed grinding pass cuts this is due to the training data and 0.1 mm grinding cut pass 
data being very similar in characteristics. With the other grinding pass cuts the NN 
output displays linear regression with respect to the groove being cut. 

7 Classification of cutting, ploughing and rubbing using  
fuzzy-c clustering/GA 

Figure 6 displays the equivalent fuzzy-c/GA cluster outputs to the NN outputs of  
Figure 5. Figure 6 displays the first two principle components (which contain 65% of the 
total variance of the 300 cases of 205 elements of data). The fuzzy-c/GA outputs are 
mapped onto these two principle components which are based on the highest evaluated 
data cluster centre membership. For cutting data two cluster centres were output based on 
the optimised criteria between fuzzy-c algorithm and GA. 

Table 3 displays the known classification accuracy of fuzzy-c clustering. Here  
the correct/incorrect clusters were checked against the known phenomenon and a 
percentage of classification was determined. Table 4 displays the percentage of cutting, 
ploughing and rubbing phenomenon for Hit 4, Hit 14 and Hit 15, 0.1 µm cuts and  
Hit 20, 0.1 mm cut. 

From looking at Table 4 it is again possible to see more utilisation of cutting, then 
ploughing and rubbing when the depth of cut increases leading to more interaction 
between grit and workpiece. The fuzzy-c/GA classifier was first tested for the SG4 data 
(T212 and T211 SG4 full cutting, ploughing and rubbing data) and the classifier 
produced 90% classification accuracy. Then the output of the hit data (for 1 µm and  
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0.1 mm cuts, respectively) using the fuzzy-c/GA clustering classifier is displayed in 
Figure 7, this is in comparison with the NN output displayed in Figure 5. For each 
individual hit the classification consisted of both the training and test SG4 data used in 
the NN experiments. 

Figure 6 Fuzzy-c clustering, top left: Hit 4, top right: Hit 14, bottom left: Hit 15 of 0.1 µm cut 
and bottom right: Hit 20 of 0.1 mm cut 

 

Table 3 Fuzzy-c clustering results for 0.1 µm cuts and 0.1 mm cut 

Test set FuzzyGA  
cutting (C) 

FuzzyGA  
ploughing (P) 

FuzzyGA  
rubbing (R) 

Classification  
accuracy % 

Test SG4 61/62 43/47 81/97 90 (185/206)  

Hit 3 T211 
(rubbing) 

53/55 51/66 84/85 91 (188/206) 

Hit 2 T212 52/55 60/66 84/85 95 (196/206) 

Hit 4*  
(*1 µm cut) 

69/69 41/50 71/87 88 (181/206) 

Hit 14* 42/48 58/59 68/99 82 (167/206) 

Hit 15* 46/46 72/96 55/64 84 (173/206) 

Hit 20  
0.1 mm cut 

39/44 82/85 77/77 96 (198/206) 
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Table 4 The fuzzy-c cluster for the percentage of C, P and R phenomenon 

Test set C (%)  P (%) R (%) Iterations and 
clusters 

Fitness 

Test SG4 33 (20/60) 23 (19/60) 44 (21/60) 78/4 0.7245 

Hit 3 T211  
(rubbing) 

0 (0/21) 0 (0/21) 100 (21/21) 190/6 0.822 

Hit 2 T212 32 (12/38) 61 (23/38) 8 (3/38) 153/5 0.1305 

Hit 4  
(1 µm cut) 

19 (9/47) 26 (12/47) 55 (26/47) 135/6 1.659 

Hit 14  
(1 µm cut) 

52 (30/58) 23 (13/58) 21 (12/58) 81/4 0.8862 

Hit 15  
(1 µm cut) 

58 (36/62) 24 (15/62) 18 (11/62) 165/6 1.85 

Hit 20  
0.1 mm Cut 

76 (48/60) 22 (13/60) 2 (1/60) 120/5 0.968 

Figure 7 Displays the fuzzy-c clustering and GA classification for grinding wheel cuts 

 

When the associated hit data for 1 µm and 0.1 mm cuts were concatenated with the 
training data, the classification had to be recalculated each time the different hit was 
presented this is due to the training data being of known phenomenon distinction and the 
1 µm and 0.1 mm being of unknown phenomenon distinction. This creates a problem for 
verification purposes in that the more unknown data the less to check the recently added 
test data. By calculating each individual test case to the known cluster memberships the 
more accuracy and confidence is gained in phenomenon distinction. It would appear that 
both the NN and fuzzy-c/GA clustering techniques have given similar results and 
therefore the findings in this paper are conclusive of the cutting, ploughing and rubbing 
phenomenon distinguished by the energy released from the workpiece and grit 
interaction in the form of an AE signal. That said where the results are slightly in favour 
of one phenomenon than another when compared between the two classification 
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techniques this can be attributed to incorrectly classifying a cluster set (hence no hard 
separation rule with fuzzy-c clustering) or a low returned fitness value. In short if the 
classifier produces 90% or more for the known data set then there is more confidence 
when the rubbing, 1 µm and 0.1 mm cuts are introduced to the classifier. 

8 Discussion of classification results 

From comparing the results between the two classifiers there are differences between the 
given outputs. These differences can be attributed to the different methods  
of classification. For instance; looking at Figure 6 the NN outputs for the rubbing, 1 µm 
and 0.1 mm cuts have levels between 1 and 3 and were not identified as crisp integers. 
This is due to the presented data being similar albeit different to the training and test data 
of the original NN data set. The varying levels display linear patterns with reference  
to the interaction of between the workpiece and grit. A threshold rule based system was 
used to classify which was cutting, rubbing and ploughing. The thresholds used were any 
input vector less than 1.5; cutting, greater than 1.5 but less than or equal to 2.5; 
ploughing and above classified as rubbing. This hard classification rule based system 
segregates the boundaries based on absolute outputs. The fuzzy-c clustering/GA 
classification system looks at all the data points and works out a crisp output albeit the 
identified cluster may have the same distance as another cluster or be very near  
to another cluster and therefore has attributes for both classes. It was noted that some  
of the outputs for the fuzzy-c clustering/GA classification system had data points 
belonging to two cluster pairs however the one absolute cluster was chosen based on its 
position in the identified fuzzy matrix. The output differences have correlations with 
each other in that the more workpiece and grit interaction through measured depth of cut 
the more cutting phenomenon occurs followed by ploughing then lastly, rubbing. Both 
classifiers had a high confidence in terms of classifying both the training and test data 
with 93% and 90%, respectively for the NN and fuzzy-c clustering/GA classifiers.  
That said, the data hit data presented to the NN had close boundary conditions and with 
the hard rule based threshold postprocessor some that was applied to the NN for 1 µm 
and 0.1 mm cuts, output cases could have been cutting when instead they were ploughing 
and the same for ploughing with rubbing. With fuzzy-c/GA the results that were 
significantly different to the NN results had a higher fitness function, when a lower 
fitness function returns a higher classification accuracy. In addition, more clusters are 
returned which can easily be classified incorrectly giving an incorrect classification. 
Even with some similar but slightly different results gained by the comparison of the two 
classifiers a pattern can be scene in the classification of the three phenomenons.  
This pattern is summarised as greater intensities towards rubbing when grinding wheel 
passes with slight touch are made and, greater intensities towards cutting when 
operational grinding wheel passes are made. 

9 Conclusions 

The 1st part of this work concerned identifying the fundamental signatures of SG 
phenomenon which is the key to the process of monitoring grinding. This part of the 
work concludes the investigation of horizontal SG scratch cutting, ploughing and rubbing 
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by classifying the three different phenomenon using NNs and fuzzy-c clustering/GA 
classification techniques. This paper has demonstrated that STFTs as a useful technique 
to distinguish the frequency bands occupied by cutting, ploughing and rubbing 
phenomena. 

Both the NN and fuzzy-c clustering/GA classifiers were found to have a high 
confidence of distinguishing cutting, ploughing and rubbing phenomenon. The NN 
classified the phenomena at 87% for the unseen test data set classification accuracy and, 
93% for the total test classification accuracy. The fuzzy-c clustering GA had a 90% of 
total data set classification accuracy (both training and test sets was presented to the 
classifier for this accuracy result). 

The further tests looked at hit data taken from grindings with 1 µm and 0.1 mm depth 
cuts, both classifiers indicated more percentage of cutting utilisation when that the 
process had more interaction between workpiece and grit (i.e. measured increased actual 
depth cut). The rubbing (Test 211) and 1st hit for 1 µm scratch had more rubbing 
percentage utilisation when compared with both ploughing and cutting phenomenon. 
Looking at the general patterns from the three different grinding passes both classifiers 
provided some encouraging results with differences attributed to classification accuracy 
and increased cluster sets for the fuzzy-c GA classifier where the NN engine remained 
the same throughout the applied grinding pass data. There will always be slight 
differences between the two classifiers as fuzzy-C/GA is a non-supervised technique and 
NN is a supervised technique. 
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