
Constructive contextual modal judgments for
reasoning from open assumptions

Giuseppe Primiero?

Centre for Logic and Philosophy of Science
University of Ghent

Blandijnberg 2, 9000 Gent (Belgium)
Giuseppe.Primiero@UGent.be

Abstract. Dependent type theories using a structural notion of context
are largely explored in their applications to programming languages, but
less investigated for knowledge representation purposes. In particular,
types with modalities are already used for distributed and staged compu-
tation. This paper introduces a type system extended with judgmental
modalities internalizing epistemically different modes of correctness to
explore a calculus of provability from refutable assumptions.

1 Introduction

Constructive logics use proofs as first-class citizens to define the notion of truth.
Dependent truth is easily interpreted in a contextual reading of provability, as
in Martin-Löf Type Theory.1 In such a system one distinguishes between propo-
sition A and judgment A true, justified by an appropriate proof term a : A.
Correspondingly, contextual truth allows formulae of the form Γ ` a :A, with
Γ = [x1 : A1, . . . , xn : An] and a a proof of A under appropriate substitutions
[x1/a1 :A1, . . . , xn/an :An] ` a : A. Hypothetical truth is thus reduced to depen-
dent closed constructions, hypotheses are obtained by abstracting on the relevant
proofs and ultimately grounded on the primitive notion of premise (known judg-
ment). Computationally this corresponds to β-reduction for proof terms and the
evaluation of codes in a program. The modal formulation of contextual calculi
is the next obvious step. Along with the standard intuitionistic translation of
K and the constructive version of S4,2 a weaker format to accommodate the
notion of context is given by the possible-world semantics CK in [13], sound
and complete with respect to the natural deduction interpretation of [5].3 Re-
? Post-Doctoral Fellow of the Research Foundation - Flanders. Associate Researcher

IEG - Oxford University. The author wishes to thank the participants at the Logic
Seminar, Helsinki University and at the Hypo Project, IHPST, Paris for comments;
in particular Sara Negri and Peter Schröder-Heister for their useful insights; and
three anonymous referees for helpful comments.

1 See [11], [12].
2 See for example [24], [2], [1].
3 This system is the most basic modal logic of contexts, with formulas ist(k,A) that

read “A is true in context k” and it satisfies a multi-modal K fragment of a Propo-
sitional Logic of Contexts.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55688816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cently, contextual modal type theories for programming languages and further
research in linguistics and hardware verification have been formulated, especially
to model staged and distributed computation.4

In the present paper, a modal type system is used to formalize epistemic pro-
cesses under refutable assumptions. Our starting point is the constructive reading
of the notion of truth as existence of a verification, to design a type-theorethical
format for the epistemic notion of verification under open assumptions. The no-
tion of truth up to refutation recalls a sensible topic for constructive logics,
based on the meaning of intuitionistic negation.5 The present paper dwells on
the foundational idea that truth is admissible up to a counter-example.6 Admis-
sible truths are literally satisfied by the logical concept of assumption, intended
as a computational term which is not presented together with an appropriate
β-redex. The related constructive modal type system variates on a theme first
proposed in [18] and later expanded in [16]. In section 2 of the paper I provide a
variant interpretation of the basic system of constructive type-theory that links
hypotheses and refutable contents; in section 3 a modal type system is designed
that preserves refutability. Conclusive remarks set the next steps of this research.

2 A system for proven and refutable contents

Describing realistic knowledge processes requires explaining hypotheses as con-
tents whose truth is declared, but whose refutation is not ruled out.7 The cor-
responding logical notion is that of an (open) assumption which needs to be
justified independently from proven contents to be integrated in the construc-
tive definition of truth.

To obtain this, we start from a polymorphic language containing one basic
sort type for categorical constructive judgments with corresponding term con-
structors a, b; and one sort typeinf (information type) for judgments in a context
of refutable conditions, with corresponding variable constructors x1, x2. Judge-
ments of the first sort induce a constructive notion of truth (true), the second
ones a weaker predicate of truth up to verification (true∗). Identity of terms
hold within type, and its constructors are composed standardly by way of list-
ing, application, abstraction and pairing to define connectives and quantifiers:
∧,∨,→,∀,∃. In particular: → is material implication obtained by application of
two already obtained constructions, namely by an application a(b) of the con-
struction a of the antecedent to the construction b of the consequent, which can

4 See e.g. [4], [14], [15].
5 For the standard intuitionistic meaning explanation of negation, indirect proofs as

reductio ad absurdum are standardly not admitted, whereas the usual intuitionistic
absurdity rule interprets the classical ex falso quodlibet. See e.g. [23, p. 40].

6 This remembers the notion of ‘pseudo-truth’ introduced in [10] for double-negated
classical formulae reducible to intuitionistic ones.

7 Formally, it expresses processual information without appropriate computational
instructions, the same intuition behind the explanation of partial evaluation, where
a function program considers part of its input code as given. Cf. [9].

be seen as a λ-term presented together with one of its α-terms.8 ∀ abstracts from
enumerable sets of equivalent constructions; ∃ is justified by paired construc-
tions. Admissibility of the typeinf sort is defined in two steps: first, the con-
struction a :A establishes the inadmissibility of ¬A in further contexts; secondly,
a missing construction for (A → ⊥) allows assumption formation x : A. Vari-
ables are unique in context for typeinf ; abstraction and conversion on variables
define respectively function formation and reduction to type. Material implica-
tion is therefore distinct from function formation ⊃, the latter being given by
abstraction on the admissible construction for the antecedent. Proof terms can
occur both in and outside of a context, proof variables hold only in contexts.
Types are typically propositions and judgments are built by declaration of true
or true∗. The syntactically introduced semantic notions extend the standard
format of Constructive Type Theory. In the following, we omit for brevity the
identity rules that define Reflexivity, Symmetry and Transitivity on types; the
explanation of modal contexts is left to the next section. Our syntax is as follows:

Types := A type;A typeinf ;
Propositions := A;A ∧B;A ∨B;A→ B; (∃ai :Ai)B; (∀ai :Ai)B;A ⊃ B;
Proof terms := a : A; (a, b); a(b);λ(a(b));<a, b>;
Proof variables := x :A; (x(b)); (x(b))(a);
Contexts := Γ, x :A;Γ, a :A; �Γ ; ♦Γ ;
Judgments := A true;A true∗;Γ ` A true; ♦(A true); �(A true).

Introduction Rules express the validity of semantic judgements (true/true∗)
from appropriate syntactic constructions (a/x :A); quantifiers introduction and
conversion determine the validity of new typing judgement (A type) from previ-
ously defined ones.

a :A
A type

Type Formation
a :A
A true

Truth Definition

a :A
LeftI∨

l(a) :A ∨B true

b :B
RightI∨

r(b) :A ∨B true

a :A b :B
I∧

(a, b) :A ∧B true

a :A A true ` b :B
I → (Implication)

a(b) :A→ B true

a1 :Ai, . . . , an :Ai [Ai true] ` b :B λ((ai(b))A,B)
I∀

(∀ai :Ai)B type

a1 :Ai, . . . , an :Ai [ai :Ai] ` b :B [ai :Ai] ` b :B
I∃

(∃ai :Ai)B type

8 A literal interpretation of intuitionistic implication á la Heyting. This implements
in the language the standard (meta-)reasoning requiring the substitution of the con-
struction of the antecedent to be performed in order the construction of the conse-
quent to be obtained and it recalls ideas mentioned by Martin-Löf and the calculus
of types with explicit substitutions presented in [22].

a :A
I⊥

¬A→ ⊥

An elimination rule on the ⊥-rule would validate a double-negation elimination,
which is avoided by a non-standard extension to functional expressions. For-
mally, a dependent judgment is nothing else than a functional relation among
expressions: if A type holds, then a construction of a new type B is possible by
considering the latter as a family of sets over some x :A such that x :A ` B type
whenever the substitution [x/a] is performed.9 A new task is to admit no explicit
evaluation on such formulae, extending the system with the new type format
typeinf . Formulas of the information type are introduced by proof variables; a
judgment A typeinf is justified by running a test on previous derivations such
that it checks no construction for ¬A type to be given:

¬(A→ ⊥)
A typeinf

Informational Type Formation

A typeinf x :A
A true∗

Hypothetical Truth Definition

The judgment ¬(A→ ⊥) says that there exists no construction for A true→ ⊥.
Its combination with typeinf formation does not imply that from ¬(A → ⊥)
follows a :A: the latter justification is kept entirely constructive and therefore
cannot be given by indirect proof. The second rule says that provided A can
be admitted as a typeinf , a weak truth-predicate true∗ (true up to refutation)
is inferred by assuming a construction for A exists: it can be seen as a place-
holder for ungrounded truth.10 On this interpretation one defines functional
expressions:
9 The type checking will require first well-formedness of A, secondly evaluation to a

current environment for extraction of variable terms, thirdly construction for the
variable in that environment, and finally evaluation of the variable and the formula-
tion of the binding expression to a value for that environment. The generalization to
multiple dependence being allowed, terms for [x1 :A1, . . . , xn :An] ` B type are eval-
uated to normal forms (eventually: weak head normal forms, explicit substitutions,
closures) in order the predication B type to be valid.

10 Our admissibility rule for the typeinf sort interprets the distinction between inten-
sionality and extensionality of types as treated e.g. in [17]: expressions are treated
intensionally being subject only to α-conversion; terms are treated extensionally, be-
ing additionally subject to β and η-conversion. Similarieties can also be found with
the Lax modality defined in a propositional intuitionistic logic in [6]: the modal for-
mula ◦φ expresses the inhabitation of φ in the context of a number of assumptions
holding in a stronger theory. The theory designs two distinct and dual contexts: one
where the formula is true only in certain worlds where appropriate constraints hold,
the other only where constraints are false. The former is the partial element lifting
and the latter the exception lifting for the type formula φ at hand. See [6, p.65].
Our double-negated typing might be seen as a way of admitting the first kind of
constraints, up to proving that the second kind holds.

A typeinf x :A ` B typeinf

x :A ` B true∗

which says that B is true up to a refutation of A. The weak truth predi-
cate induces the standard dependent functional construction by abstraction;
β-conversion provides the appropriate translation to standard dependent type
formation by application:

A typeinf x :A ` B true∗

Functional Abstraction
((x)b) : A ⊃ B true

A typeinf x :A ` B typeinf a :A
β − conversion

(x(b))(a) = b[a/x] :B type[a/x]

3 Contextual Modal Type Theory for verification and
refutation

The different notions of truth are internalized in our system by the use of epis-
temic modalities. Previous modal versions of type theory ([18, 16]) use propo-
sitional modalities to speak about dependent truth via additional judgments:
“proposition ‘A is necessary’ is true” (�A true) and “proposition ‘A is pos-
sible’ is true” (♦A true). Such system satisfies the condition of reduction of
hypotheses to closed constructions by distinguishing assumptions of truth and
valid assumptions. If (�A true) means the truth of A in a world in which we
know nothing (validity), (♦A true) means that there is nothing else we can say
about the world in which this happens (so that nothing else can be assumed).
This system satisfies a S4 normal modal logic.

In the present system, modalities are judgmental operators:11 �(A true)
says that A is true and has no refutable conditions (either there are none, or
all of them have been secured); if A true holds, it also holds under refutable
data being added, by definition no declaration ¬A typeinf being allowed if a :A
is formulated. This makes A verified in any extension of the empty context.
♦(A true) says that A is true in those epistemic states where conditions are
not refuted. Our type-theoretical language defines a derivability relation that
can be simulated in a model-theoretical setting with a verification function over
ordered models.12 Such models are provably equivalent to those of a contextual
version of KT with � and ♦, hence inducing an equivalence with the fragment
of constructive S4 with possibility and without iterations.13

11 For more on the philosophical justification of this notion of judgmental modalities,
see [21].

12 See [20].
13 See [1]. The models corresponding to type are those with the categorical verification

function and the satisfied dependent ones: these are both reflexive and transitive
over the preorder and satisfy axiom T� : �A→ A. The models corresponding to the
typeinf sort are models with refutable assumptions; they deal with the possibility
operator by means of the axiom T♦ : A → ♦A and the ♦-introduction rule: Γ, Γ ′ `
A⇒ �Γ,♦Γ ′ ` ♦A.

A premise and a hypothesis rule introduce the truth predicates (both rules
can have Γ,∆ = {∅}):

Γ, a :A,∆ ` A true
Premise Rule

Γ, x :A,∆ ` A true∗
Hypothesis Rule

Definition 1 (Definition of (Local) Validity).

1. If A true then A is valid.
2. If A is valid then Γ ` A true, for every Γ .
3. If A true∗ then A is locally valid in view of some Γ ` A true.

Modalities are internalized by appropriate formation rules from categorical and
hypothetical judgments:

a :A
�(A true)

�-Formation
x :A

♦(A true)
♦-Formation

The inference to truth of contextual judgements requires verification of assump-
tions. To this aim, modalities are now generalized to contextual formulas.14

Definition 2 (Necessitation Context). For any context Γ , �Γ is given by⋃
{�A true | for all A ∈ Γ}.

Definition 3 (Normal Context). For any context Γ , ♦Γ is given by
⋃
{◦A true |

◦ = {�,♦} and ♦A true for at least one A ∈ Γ}.

The introduction of judgmental � is allowed under verification of judgments in
context, its elimination rule induces a valid proposition:15

Γ ` A true
�Γ ` �(A true)

I�
�Γ ` �(A true) ∆, a :A ` b :B

Γ,∆ ` B true
E�

where �Γ iff [xi/ai] :Ai,∀Ai ∈ Γ , as by Definition 2. Local validity is in turn
defined by introduction and elimation rules for the ♦-operator:

Γ, x :A ` B true∗

�Γ,♦(A true) ` ♦(B true)
I♦

Γ,∆ ` A true∗ �Γ,♦(A true) ` ♦(B true)
Γ,∆ ` B true∗

E♦

14 In various literature in modal logic, Necessitation and Normal Context are usually
called Global and Local Context. This distinction is crucial for derivability under
assumption in modal languages, involving the validity of the Deduction Theorem,
see [8]. I have strenghtened here the reasoning, by obtaining modal judgments (rather
than formulae) from the preservation/verification of assumptions. Cf. [7].

15 This is the crucial difference with the system introduced in [18], where �A expresses
validity but it can be introduced under hypotheses. In the comparison with the sys-
tem in [5], the obvious similarity is that the therein contained modality �k satisfies
the same principle of our I�, namely it builds-in the substituitions needed for for-
mulas in contexts. On the other hand, the propositional format does not require any
♦ operator, its role being syntactically satisfied by standard contexts.

The introduction rule shows the dependency of possible contents from refutable
conditions; the corresponding elimination uses this information to infer further
possible knowledge under the condition expressed by Definition 3.

Substitution of variables by constants is as usual indicated by [x/a]B as
the substitution of occurrences of x in B by a; in our system this gives the
relation between verification and truth and the modal version shows that term
substitution satisfies the inclusion of ♦ in �:

Theorem 1 (Substitution on terms).

1. If Γ, x :A,∆ ` B true∗ and Γ,∆ ` a :A, then Γ,∆ ` [x/a]B true.
2. If �Γ,♦(A true),�∆ ` ♦(B true) and �Γ,�∆ ` �(A true), then �Γ,�∆ `

�(B true).

Proof. 1. by induction on the first given derivation, using the Hypothesis Rule
and the inclusion of B true∗ in B true; from the second premise all occurrences
of A are declared type, in particular those in Γ,∆ ` B true∗ by β-conversion,
then B true follows as valid in any extension of Γ,∆. 2. again by induction on
the first given derivation: by E♦ on the first premise one obtains an occurrence
of x :A, using β-conversion on A true∗ one obtains B true in the second premise;
by I� one finally obtains �(B true). ut

β-reduction and η-expansion, i.e. local inversion of modal rules hold; theorem 1
is crucial to this aim together with the structural properties of our system:

Theorem 2 (Weakening). The inference systems satisfies Weakening:

1. If Γ ` B true, then Γ, a :A ` B true.
2. If Γ ` B true∗, then Γ, x :A ` B true∗.
3. If �Γ ` �(B true), then �Γ,�(A true) ` �(B true).
4. If ♦Γ ` ♦(B true), then ♦Γ,♦(A true) ` ♦(B true).

Proof. By induction on derivations: in 1. uses the Premise Rule; in 2. uses the
Hypothesis Rule; in 3. uses I�, in 4. uses I♦.

Theorem 3 (Contraction). The inference system satisfies Contraction:

1. If Γ, a1 :A, a2 :A ` B true, then Γ, a :A ` [a1 ≈ a2/a]B true.
2. If Γ, x1 :A, x2 :A ` B true∗, then Γ, x :A ` [x1 ≈ x2/x]B true∗.
3. If �Γ, a1 :A, a2 :A ` �(B true), then �Γ,�(A true) ` �(B true).
4. If �Γ, x1 :A, x2 :A ` ♦(B true), then �Γ,♦(A true) ` ♦(B true).

Proof. By induction on derivations: Refleflexivity and Symmetry for proof terms
in 1.; unicity of proof variables for typeinf in 2.; in addition Truth Definition
and I� for 3.; Hypothetical Truth Definition and I♦ for 4..

Theorem 4 (Exchange). The inference system satisfies Exchange:

1. If Γ, a1 :A, a2 :A ` B true, then Γ, a2 :A, a1 :A ` B true.

2. If Γ, x1 :A, x2 :A ` B true∗, then Γ, x2 :A, x1 :A ` B true∗.
3. If �Γ, a1 :A, a2 :A ` �(B true), then �Γ, a2 :A, a1 :A ` �(B true).
4. If �Γ, x1 :A, x2 :A ` ♦(B true), then �Γ, x2 :A, x1 :A ` ♦(B true).

Proof. By induction and using the same properties on terms and variables as for
Contraction.

Local inversion of modal rules is finally shown. Soundness by local reduction
on �(A true):

D1

Γ ` A true
I�

�Γ ` �(A true)
E

∆, a :A ` b :B
E�

Γ,∆ ` B true

⇒Redex

D2

Γ,∆ ` B true

D2 is obtained from D1 and E by Theorem 1: a proof term for A is induced from
Γ in D1, in turn providing a proof term for B in E. In computational terms,
this rule formalizes β-reduction of B (value) with respect to all occurrences of
its procedures (codes) in A. Completeness by local expansion on �(A true):

D1

�Γ ` �(A true) ⇒Exp
D2

�Γ ` �(A true)

Prem
Γ, a :A ` A true

I�
�Γ, a :A ` �(A true)

E�
Γ ` A true

By this expansion one shows how E� provides all the information needed to
reconstruct �(A true). Computationally, it reconstructs the value on code A.16

Soundness by local reduction on ♦(A true):

D1

Γ, x :A ` B true∗
I♦

�Γ,♦(A true) ` ♦(B true)
E

Γ,∆ ` A true∗
E♦

Γ,∆ ` B true∗

⇒Redex

D2

Γ,∆ ` B true∗

D2 is justified from D1 and E by the Hypothesis Rule and I♦: by E, Γ,∆
in reduced form will contain at least one formula of typeinf , which justifies
true∗ in D2. Computationally, this reduction formalizes the naming of codes
that are presented partially evaluated to program B. Finally, completeness by
local expansion on ♦(A true):

D1

♦Γ ` ♦(A true) ⇒Exp
D2

♦Γ ` ♦(A true)

Hyp
Γ, x :A ` A true

I♦
♦Γ,♦(A true) ` ♦(A true)

E♦
Γ ` A true∗

16 This formulation of the �-rules does not violate the meaning of hypotheses, as it is
the case with the rules for necessity in [19]. On the other hand, given Definition 2,
a side condition on multiple simultaneous substitutions is unavoidable, see [3].

This expansion shows how to reconstruct all the information needed to for-
mulate ♦(A true), as a partial evaluation of program A.

Model of this dependent types system is a weakening of the truth-values
model.17 Our truth-functional model considers its types as pairs A = [a,→],
with a the verification term and → the evaluation function:

– A = [a,→] = {1} if x→a = 1 and A : type = 1
– A = [a,→] = ∅ if x→a = undefined and A : typeinf = 1
– A = [a,→] = {0} if x→a = 0 and A : type = 0

The models for typeinf admits undefinability, hence it preserves only symmetric-
ity on the standard models and the partition is no longer satisfied, i.e. inhabitness
is not guaranteed.18

4 Conclusions

Our modal type system allows refutable truths in a constructive setting. The
main application is the modeling of knowledge processes with embedded com-
munication processes intended as refutable contents in a distributed or staged
format: this is especially interesting in view of a multi-modal version of this
language, where the dependency relation can be interpreted as communication
among nodes of a trusted network. The comparison with staged and distributed
processing is completed by indexing of local processes and the interpretation
of modalities as code mobility. The extension to a multi-conclusion inference
relation is the next obvious step for this modal type-theory.

References

1. N. Alechina, M. Mendler, V. de Paiva, and E. Ritter. Categorical and Kripke Se-
mantics for Constructive S4 Modal Logic. In Proceedings of the 15th International
Workshop on Computer Science Logic, volume 2142 of Lecture Notes In Computer
Science, pages 292 – 307, 2001.

2. G. Bellin, V. de Paiva, and E. Ritter. Extended Curry-Howard Correspondence for
a Basic Constructive Modal Logic. preprint; presented at M4M-2, ILLC, UvAms-
terdam, 2001, 2001.

3. G.M. Bierman and V. de Paiva. Intuitionistic necessity revisited. Technical Report
CSRP-96-10, School of Computer Science, University of Birmingham, 1996.

4. R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of
the ACM, 48(3):555–604, 2001.

5. V. de Paiva. Natural Deduction and Context as (Constructive) Modality, P. Bal-
ckburn et al. (eds.), CONTEXT 2003, volume 2680 of Lecture Notes in Artificial
Intelligence, pp. 116-129. Springer Verlag, 2003.

17 The latter is given by the category of contexts as the poset {1, 0} that satisfies
inhabitness by at most one element and intensional identity types.

18 A weakening of the PER models, that could be called ‘super-modest types’.

6. M. Fairtlough and M. Mendler. On the logical content of computational type
theory: A solution to Curry’s problem. In P. Callaghan, Z. Luo, and J. McKinna,
editors, Types for Proofs and Programs, volume 2277 of Lectures Notes in Computer
Science, pages 63–78. Springer Verlag, 2002.

7. M. Fitting. Basic modal logic, volume 4 of Handbook of Logic in Artificial Intelli-
gence and Logic Programming, pages 368–449. Oxford University Press, 1994.

8. R. Hakli and S. Negri. Does the deduction theorem fail for modal logic?
Manuscript, to appear, 2008.

9. N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. International Series in Computer Science. Prentice-Hall International,
1993.

10. A. Kolmogorov. On the principle of excluded middle. In J. Van Heijenoort, editor,
From Frege to Gödel: a source book in mathematical logic 1879-1931, pages 414–
437. Harvard University Press, 1967.

11. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
12. P. Martin-Löf. On the meaning of the logical constants and the justifications of

the logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60, 1996.
13. M. Mendler and V. de Paiva. Constructive CK for Contexts. In Proceedings of the

first Workshop on Context Representation and Reasoning - CONTEXT05, 2005.
14. J. Moody. Modal logic as a basis for distributed computation. Technical Report

CMU-CS-03-194, School of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA, USA, 2003.

15. T. Murphy, K. Crary, R. Harper, and F. Pfenning. A symmetric modal lambda
calculus for distributed computing. In H. Ganzinger, editor, Proceedings of the
19th Annual Symposium on Logic in Computer Science (LICS’04), pages 286–295.
IEEE Computer Society Press, 2004.

16. A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. ACM
Transactions on Computational Logic, 9(3):1–48, 2008.

17. F. Pfenning. Intensionality, extensionality, and proof irrelevance in modal type
theory. In J.Y. Halpern, editor, Proceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science, pages 221–230. IEEE Computer Society Press, 2001.

18. F. Pfenning and R. Davies. A judgemental reconstruction of modal logic. Mathe-
matical Structures in Computer Science, 11:511–540, 2001.

19. D. Prawitz. Natural Deduction. Almqvist & Wiksell, 1965.
20. G. Primiero. A constructive modal semantics for contextual verification. In

A. Mileo and J. Delgrande, editors, Proceedings of the First international Work-
shop on Logic-based Interpretation of Context: Modelling and Applications, volume
550 of CEUR Workshop Proceedings, pages 33–35, 2009. Full Paper available as
Technical Report, Centre for Logic and Philosophy of Science, Ghent University.

21. G. Primiero. Epistemic modalities. In G. Primiero and S. Rahman, editors, Acts
of Knowledge: History, Philosophy and Logic, volume 9 of Tributes, pages 207–232.
College Publications, 2009.

22. A. Tasistro. Formulation of Martin-Löf’s Type Theory with Explicit Substitutions.
Lic thesis, Department of Computing Science, Chalmers University of Technology
and University of Göteborg, 1993.

23. A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction,
volume I,II. North-Holland, Amsterdam, 1988.

24. D. Wijesekera. Constructive modal logics I. Annals of Pure and Applied Logic,
50:271–301, 1990.

