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Abstract. Structure from motion based 3D reconstruction takes a lot
of time for large scenes which consist of thousands of input images. We
propose a method that speeds up the reconstruction of large scenes by
partitioning it into smaller scenes, and then recombining those. The
main benefit here is that each subscene can be optimized in parallel.
We present a widely usable subdivision method, and show that the dif-
ference between the result after partitioning and recombination, and the
state of the art structure from motion reconstruction on the entire scene,
is negligible.
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1 Introduction

More and more applications require accurate three dimensional (3D) models
of the world, e.g. planning urban environments and infrastructures, automated
object detection, or augmented reality and CGI in movies. To create these 3D
models various options exist, including mobile mapping, laser scanning, or man-
ual surveying. These ground based acquisition methods all have in common that
they are time consuming, especially for larger areas. The most practical approach
to quickly cover a lot of terrain is that of aerial imaging, where 2D pictures are
captured and then processed to create a 3D model [4]. Just like in [13], the 3D
model is derived from multiple pictures of the same area, taken under different
angles.

To find the initial position of the pictures usually GPS information is used.
A major problem however is that we can not always rely on GPS information
being available. In land based mapping anything that interferes with the line of
sight to the GPS satellite has a negative effect on the reception, e.g. trees or
large buildings. But even low altitude aerial surveillance can not always count
on a GPS link, as certain regions have active jamming devices (e.g. conflict
zones). A good solution to handle these problems is to employ structure from
motion. Instead of relying on the GPS information, the position of the camera
is determined from image correspondences. Consecutive aerial pictures have a
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high percentage of overlap, making this possible. However the computation time
required by structure from motion is approximately quadratic in the amount of
points in the scene [15], and so does not scale well to very large scenes.

If we could limit the structure from motion optimization to small scenes,
and then later combine all small scenes into one global scene, the downsides
of the quadratic behaviour would be largely avoided. Additionally, every small
scene can be optimized in parallel, further increasing the reconstruction speed.
In this paper we work out the details involved in splitting and recombining
a large scene, and evaluate how the final result changes with respect to the
original, slow reconstruction. We do not compare with any ground truth, as the
absolute accuracy of the 3D model obtained by various reconstruction methods
has already been evaluated in [11].

Previous work on speeding up structure from motion for large scenes includes
sub-sampling and hierarchical decomposition [10]. While effective, the downside
here is that for very large scenes, the required time is still quadratic. The methods
presented in [14] and [9] also use partial reconstructions to speed up the final
result. However these techniques uses the Hessian of the reprojection error and
its eigenvector to split up the global scene, which implies that the scene must be
already approximately reconstructed. Again, this requires a lot of time for large
scenes consisting of many pictures.

The rest of this paper is arranged as follows. First we briefly explain structure
from motion and bundle adjustment. Next we present the theory behind our
method to speed up the computations, followed by experiments to evaluate the
accuracy on practical data. We end with a conclusion.

2 Structure from motion

2.1 3D reconstruction with bundle adjustment

We first discuss the problem of the 3D reconstruction of a scene, based on mul-
tiple 2D views from different locations. Given n 3D points which are observed
by m cameras, we can write as x;; the projection of point ¢ in camera j, with
1= 1..n and j = 1..m. The projection from a 3D point X to a 2D point x can
be written compactly in homogeneous coordinates as

Ax = MX (1)

with A a scale factor and M the 3 x 4 homogeneous camera matrix, with 11
independent parameters [6]. This projective camera model can be simplified to
Euclidean cameras, for which M can be decomposed into

M = K[R]t] (2)

where t is augmented to R. Here K is the 3 x 3 intrinsic calibration matrix
containing the camera’s optical properties, such as focal length, principal point
and aspect ratio. The camera’s extrinsic parameters are given by R, a 3 x 3
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rotation matrix, and t, a 3 x 1 translation vector. From this we calculate the
camera’s position as —R”t. Furthermore we can incorporate the optical image
distortion caused by imperfect lenses into (1) by writing Ar(x)= MX, with r()
the distortion function. This function maps a correct (undistorted) image to
its distorted version. e.g. 7(x) = 1+ ky ||x|* + k2 ||x||*. Many more distortion
functions exist [2], as well as camera calibration techniques to determine the
parameters of the distortion function in advance [5, 3].

The 3D reconstruction from multiple views now comes down to finding val-
ues for all cameras M and all 3D points X so that the difference between the
computed position of x from (1) and the measured position of x is minimized,

n m
pin Z Z d (M, X, %;5)° (3)

i=1 j=1
with d(x,y) the Euclidean distance. The summation of all distances is called
the reprojection error, and (3) is typically minimized using bundle adjustment
[15]. Due to the sparse nature of the equations (the parameters of individual 3D
points X and cameras M do not interact) several optimizations for speed can
be applied. Work on this by Lourakis et al. resulted in the open source software
package sba [7], using a modified version of the Levenberg-Marquardt algorithm
for the iterative optimization. Still, the required time for optimization is at least
quadratic in the number of 3D points, although exact timings depend on the
scene under consideration [7]. When all matrices M are known, a dense recon-
struction of the scene can be created, using for example the methods described

in [4].

2.2 Finding corresponding points

The bundle adjustment requires knowledge of points x;;. In other words, we must
identify points in all images that correspond to the same physical location or 3D
point. Several algorithms exists that do this, most notably SIFT [8] and SURF
[1]. These methods extract feature points that are likely to be recognized in an-
other image, and then match those feature points based on Euclidean distances
between their associated feature descriptors. The amount of point matches that
are generated, as well as their reliability, depend on the input images and on
several parameters in the algorithms. In general, regions without distinctive fea-
tures will contain less feature points. While this makes the found features more
robust, on a large scene it can also give rise to regions without any feature points.
This is not desirable, so we tweak the parameters of the feature point detection
algorithm to give roughly the same amount of feature points for all input images
(e.g. 500 points). If too much features are found, the parameters are tightened,
and vice versa.

2.3 Avoiding local optima

Due to its nonlinearity, the reprojection error defined by (3) contains many
local optima. This problem gets worse when some of the pointmatches found
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Fig. 1. Splitting a global scene into subscenes, with S = 8 and O = 2. The black dots
are the (unknown) camera positions.

in 2.2 are not correct. When solving the minimization, one should of course
avoid these local optima. The method developed in [12] solves this problem by
always starting from an approximate reconstruction of the scene from a previous
bundle adjustment iteration, and then adding just a couple of new views to it.
Additionally, these new views are first roughly positioned using RANSAC based
on the point matches. This incremental approach ensures that an intermediate
solution is always close to the global optimum, thus helping the gradient based
Levenberg-Marquardt algorithm. The downside is that a lot of computation time
is spent on re-optimizing parts of the scene that were already reconstructed, as
(3) always considers all points and cameras.

3 Proposed method

3.1 Splitting the global scene

While considering the whole scene in (3) gives the most reliable result, it is
clearly not optimal w.r.t. time. We propose a divide and conquer approach,
splitting the scene into several overlapping subsets of size S with overlap O.
Then each subset is optimized seperately, after which the results are combined.
Figure 1 shows an example. Ideally a subset consists of cameras positioned close
to eachother. The problem is that we generally do not know the positions of the
cameras in advance. However, in practice it is often the case that pictures taken
close together in time, are also close in space. Thus we subdivide the scene based
on the order in which the images were acquired. To keep things manageable, we
use a constant S and O. One could think of a dynamic splitting scheme where
S and O change based on the quality of feature matches, or closeness of initial
image transformations. However due to the large number of possibilities we leave
this as future work.

The values of S and O determine the balance between speed and accuracy,
where accuracy is defined as the difference between the combined subsets and
the result we get without splitting. Smaller subsets require less time to optimize,
but are prone to wind up in local minima. Smaller overlaps decrease computation
time as well, but also decrease the accuracy of the combined result. The reason
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Fig. 2. Combining overlapping scenes with S = 20 and O = 10, where the input was a
set of 10 megapixel aerial images taken from a plane at an altitude of 150m. (a) Scene
reconstructed from images 1 to 20. (b) Scene reconstructed from images 11 to 30.
(c) Combination without coordinate transformation. (d) Combination after coordinate
transformation. The red squares are the reconstructed positions of the cameras (i.e.
the plane’s position at each time), and the other dots are reconstructed points of the
landscape.

for this is that the bundle adjustment can only position cameras in relation to
eachother, also known as the gauge problem [15], and so does not create a global
coordinate system. To combine two or more sets of 3D points in different coordi-
nate systems, we have to know points that are present in both scenes, and based
on this correspondence find the coordinate transformation. The more points we
know, i.e. the larger the overlap, the closer this computed transformation will
be to the actual transformation.

3.2 Combining two overlapping scenes
Combining two overlapping scenes consists of three steps.

1. Locate the points that are visible in both scenes. Obviously the 3D location of
the points is not useable for this purpose, as that depends on the coordinate
system of the scene. Instead we find matches based on the indices of the
feature points. Every view of a 3D point in a certain camera is associated
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with a feature point x;; (see section 2). All feature points in a certain camera
are indexed. A point p of scene 1, visible in cameras cp, matches a point g
of scene 2, visible in cameras cq, if there exists a pair of cameras (cp, ¢q) for
which the indices of the feature points are the same. Furthermore, the camera
pair must be related by the known overlap O, so we can write ¢, = cq + O.
This search can be executed very fast using a hashtable on the point indices.
. Find the transformation between these sets of points. Given two sets of

matching points (z;, yi, z;) and (x}, yi, z}), we can write

X
z T11 Tho Th3 T4 »
yi | = | To1 Taz Tog Toa ZZ (4)
z; T31 T39 T33 T34 12

with T;; the values of the affine coordinate transformation T = [A|B], with
A the affine component and B the translation. Rewriting (4) gives

Ji/l x1y121100000000 T11
yi 00001‘12}12’110000 T12
Z1=1000000 002y 21 . (5)
: T34

which in general is an overdetermined system that can be solved using sin-
gular value decomposition. The pseudo-inversion can become slow when the
number of matches is large, so we will only use a subset (e.g. 100) of the
available matches to determine T.

. Apply T to transform the points and the camera positions, and average
cameras and points that occur twice due to the overlap. Transforming a
point is easy, simply X’ = AX + B. However from (2) the position of a
camera c is defined by its rotation R and translation t, ¢ = —R”t, so to
put the camera in the new coordinate system we must find new values for
R’ and t’ so that ¢’ = Ac + B = —R/Tt’. Expanding this gives

d=Ac+B=A(-R"t)+B
= (-AR'NN" ") t+B
— (-AR”N) (N"'t) + (~AR”N) (-AR”N) "B (6)
~ (-AR"N) (N"'t + (-AR"N) ' B)
— _R/Tt/
where N is a 3 x 3 normalization matrix added to ensure that —AR”N
is a true rotation matrix, i.e. the columns of —ARTN must have norm 1.
This means that N will only have non-zero elements on its diagonal, with
N;i, 1 = 1..3 equal to the inverse of the norm of column i of —AR”. To

summarize, for every camera cj, j = l.m we can find the transformed
camera c’; by calculating
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Fig. 3. The time required to optimize a large scene by incrementally adding images,
showing the approximately quadratic relation between scene size and calculation speed.

R, = (AR'N;)" (7)
t) =N;'t+ (-ARIN;) 'B ®)

J

Finally we also detect and remove some impossible points. A likely scenario
is a point that is visible from a camera in scene 1 with a certain feature point
index, and visible from the same camera in scene 2 (offset by the overlap
O) but with a different feature point index. This indicates that some views
of this point are incorrect. Another possibility is a triangular match, where
a point in scene 1 matches a point in scene 2 from one camera view, and
another point in scene 2 from another camera view. When this happens we
remove all involved points from the combined scene, as we can not be sure
which points and matches are correct.

4 Evaluation

4.1 Effective range

Our proposed method is only effective starting from a certain size of the global
scene. Due to overhead incurred at the start of a bundle adjustment the method
of subdividing can be slower than running the bundle adjustment on the complete
scene when this scene is small. Furthermore, for small scenes the incremental
addition of images to the reconstructed scene is approximately linear in time, so
it makes no sense to split it. Figure 3 illustrates this, showing the time required
to reconstruct a scene of 629 images on an Intel Core 2 Duo T9300 CPU. The
final scene counts 479,212 points and took over 18 hours to compute. When less
than 200 images are included in the incremental optimization, the time required
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S time subset (s)  time total (s) 1 o Hopt Copt

20 70 667 0.02315 0.01302 0.01248  0.00921
30 147 685 0.01937  0.01008  0.00863  0.00750
40 221 745 0.03692  0.02054 0.01032  0.00978
50 314 836 0.01655  0.01027  0.01520  0.01112
60 408 1001 0.00841  0.00527  0.00232  0.00241
70 492 1341 0.00742  0.00825  0.00320  0.00419

Table 1. Evaluation of the influence of the partitioning size S, for O = 10. The total
time to optimize the scene using the methods from literature [12] was 2829 seconds.
All timing results were achieved on an Intel Core 2 Duo T9300 CPU. The total scene
size is about 25 x 20 x 10 units. See the text for details.

to add more images is relatively small. However when the scene includes more
than 400 images, adding additional views and points takes a lot of time. The
reason is that the speed of the bundle adjustment is quadratic in the number
of 3D points in the scene, which is linked to the number of views. Starting the
Levenberg-Marquardt algorithm close to the optimum reduces the amount of
iterations, but does not reduce the time required for one iteration. As long as
the scene is small, the overhead from starting each bundle adjustment run will
be larger than the actual time spent optimizing, resulting in a linear behaviour.
By partitioning to sizes that fall inside this linear zone, our method has an
approximate complexity of O(N) instead of O(N?).

4.2 Influence of subscene size S

As our method focuses on improving computation time, and does not deal with
the accuracy of the result, we want to minimize the difference between point
clouds generated by state of the art methods and our proposed method. The
logical choice of method to compare to is the output generated by the method
from [12]. Table 1 presents an evaluation of the influence of the partitioning
size S for a static overlap size O = 10. The columns presented are as follows.
First the time subset, in seconds, is the time required to optimize the slowest
(i.e. most difficult) subscene. This is the total running time if the reconstruction
would run completely parallel. Next is the time total, which is the optimization
time required when the method runs sequential, in case only 1 CPU core would
be available. Note that for all values of S the total running time is lower than
when we would not split the scene. This confirms our observations from figure 3.
The next four columns give accuracy results. The first y and o are the mean and
standard deviation of all the differences between the 3D positions of all points
in the reconstructed scene using our method and the method from literature.
The second fiop: and o,y are the results after running a bundle adjustment on
the recombined scenes. This fixes deviations introduced by the splitting, but of
course at the cost of some computation time. The presented numbers only make
sense in relation to the total scene size, which is about 25 x 20 x 10 units. The
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reported errors are thus a factor 10 smaller than the scene size, meaning that
the scene reconstructed with our method will be visually identical to the scene
reconstructed using state of the art methods.

5 Conclusion

In this paper we have presented a fast and accurate approach to creating 3D
models of large scenes using structure from motion. We have shown that our
method of partitioning and recombining the global scene performs much faster
than the existing state of the art approach, while giving a result that is visually
identical. Future work can focus on a dynamic estimation of the partitioning and
overlap sizes, based on statistics taken from the point matches.
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