<u>Multiplex analysis of pro-inflammatory cytokines and pig-Major Acute Phase Protein in</u> plasma of lipopolysaccharide-challenged pigs

Wyns H., Croubels S., Demeyere K., De Backer P., Meyer E.

Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium, <u>Heidi.Wyns@UGent.be</u>

Introduction

Lipopolysaccharide (LPS) has been widely used as a model of immune challenge in pigs.^{1,2,3,4,5} It provokes the synthesis of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF- α), interleukin-1 β (IL-1 β) and IL-6, which trigger the acute phase response by inducing fever and stimulating hepatocytes to produce acute phase proteins.⁶ Pig-Major Acute Phase Protein (pig-MAP) is an excellent biomarker of different pathologies in pigs.⁷ Although time-consuming and expensive, Enzyme-Linked Immuno Sorbent Assays (ELISAs) are typically used for the determination of individual cytokines and acute phase proteins in plasma.^{3,5} However, there is growing interest in the simultaneous detection of multiple analytes in small samples by multiplex particle based flow cytometry.⁸ Two such immunoassays have been reported in pigs: one for TNF- α , IL-1 β and IL-8 and one for TNF- α , IL-1 β , IL-6 and pig-MAP.

Materials and Methods

Capture antibodies (abs) were covalently linked to the surface of different color-coded 7.5 μm polystyrene Functional Beads (Becton Dickinson, BD). A Lightning-Link R-Phycoerythrin (R-PE) conjugation kit (Innova Biosciences) was used for the R-PE conjugation of detection abs. A mixture of beads was incubated for 30 min with an appropriate standard mixture. Subsequently, a mixture of detection abs was added and incubated for 2 h. Finally, strepavidin-PE (R&D Systems) was added and samples were analyzed on a BD FACSArray[®] flow cytometer. Four stress resistant pigs (Seghers Hybrid[®]) were challenged intravenously with 15 μg ultrapure LPS/kg body weight (*E. coli* serotype O111:B4, Cayla-InvivoGen), two control pigs received the equivalent volume of 0.9% NaCl. Rectal body temperature was measured and blood samples were collected several times until 72 h p.a. Plasma samples were also analyzed with bio-assays (Vlaams Instituut voor Biotechnologie, VIB) and ELISAs (R&D Systems and PigCHAMP Pro Europe S.A.).

Results and Discussion

For the first time, TNF- α , IL-1 β , IL-6 and pig-MAP were measured simultaneously. Four representative standard curves were created after the multiplex procedure and successfully compared to the singleplex graphs. Appropriate optimization steps, regarding sample dilutions, wash- and incubation procedures, and suitable antibody pairs were performed. The ELISA and bio-assay results will be used to compare with the multiplex data. A pronounced rise in body temperature (BT) was observed after LPS administration: the AUC_{0-24h} of the mean BT time curve of 2 control and 4 LPS-challenged pigs was 931.3 \pm 0.27 and 944.5 \pm 0.57 (°Cxh), respectively. The ultimate purpose of this research is to study immunomodulatory effects of antibiotics, steroidal and non-steroidal drugs in this *in vivo* inflammatory pig model. After validation, the new multiplex method will be a powerful tool for the quantification of pro-inflammatory cytokines and pig-MAP in LPS-challenged pigs treated with these drugs. Results of the newly developed multiplex method on plasma samples from the pigs will be presented.

References

1. Webel D.M., Finck B.N., Baker D.H., Johnson R.W. (1997). Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. *Journal of Animal Science* **75**, 1514-1520.

2. Myers M.J., Farrell D.E., Baker J.D., Cope C.V., Evock-Clover C.M., Steele N.C. (1999). Challenge differentially affects cytokine production and metabolic status of growing and finishing swine. *Domestic Animal Endocrinology* **17**, 345-360.

3. Frank J.W., Carroll J.A., Allee G.L., Zannelli M.E. (2003). The effects of thermal environment and spraydried plasma on the acute-phase response of pigs challenged with lipopolysaccharide. *Journal of Animal Science* **81**, 1166-1176.

4. Carroll J.A., Carter D.B., Korte S.W., Prather R.S. (2005). Evaluation of the acute phase response in cloned pigs following a lipopolysaccharide challenge. *Domestic Animal Endocrinology* **29**, 564-572.

5. Williams P.N., Collier C.T., Carroll J.A., Welsh Jr. T.H., Laurenz J.C. (2009). Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs. *Domestic Animal Endocrinology* **37**, 139-147.

6. Baumann H., Gauldie J. (1994). The acute phase response. Immunology 5, 74-80.

7. Alava M.A., González-Ramón N., Heegaard P., Guzylack S., Toussaint M.J.M., Lipperheide C., Madec F., Gruys E., Eckersall P.D., Lampreave F., Piñeiro A. (1997). Pig-MAP, porcine acute phase proteins and standardization of assays in Europe. *Comparative Haematology International* **7**, 208-213.

8. Johannisson A., Jonasson R., Dernfalk J., Jensen-Waern M. (2006). Simultaneous detection of porcine proinflammatory cytokines using multiplex flow cytometry by the xMAPTM technology. *Cytometry Part A* **69A**, 391-395.

9. Bjerre M., Hansen T.K., Flyvbjerg A., Tønnesen E. (2009). Simultaneous detection of porcine cytokines by multiplex analysis: Development of magnetic bioplex assay. *Veterinary immunology and Immunopathology* **130**, 53-58.