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Abstract

In a typical classification problem, each data
object is restricted to belong to a single class.
However, in settings where the classes are de-
fined in a non-crisp way, this might be too
conservative. As a solution, we present an
approach which allows data objects to exhibit
a degree of membership to several classes.
More specifically, we shall consider the case
where the set of classes is equipped with a
linear order. We describe statistical models
which could underlie this kind of data as well
as algorithms that can be used to learn input-
output relations in such a non-crisp case.

1. Introduction

In the traditional binary or multi-class classification
setting, usually the restriction is made that data ob-
jects belong to a single class, i.e., to every data object
one can associate a single label from a finite unordered
set of class labels. In numerous applications, however,
this setting can be considered too conservative. Con-
sider for instance the well-studied problem setting of
multi-label classification, in which not a single label
but a set of labels is associated to every data object.
Similarly, partial membership models can also be seen
as a generalization of traditional multi-class classifi-
cation, in which to every data object a membership
degree to every class is associated, instead of a crisp
class label.

Data consisting of partial class memberships can be
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found in many domains, such as text categorization,
social network analysis, microbiology and agriculture.
As a result, researchers in statistics, machine learn-
ing and fuzzy set theory have shown interest in de-
veloping learning algorithms for partial class member-
ships. However, previous research mainly focused on
unsupervised learning algorithms, like clustering algo-
rithms such as the fuzzy c-means algorithm, where a
data instance can simultaneously exhibit a degree of
membership to several clusters.

Recently, a supervised machine learning algorithm was
proposed for multi-class classification problems where
partial class memberships are observed (Anonymous,
2009). In this paper, a similar setting is considered but
in addition it is assumed that a linear order is spec-
ified on the classes, which naturally follows from the
semantics of these classes (e.g. bad, moderate, good).
This leads to an ordinal regression setting where the
labels consist of partial class memberships. Compared
to multi-class classification, the presence of a linear
order results in two important challenges for develop-
ing partial class membership models. These two chal-
lenges directly follow from the two main differences
between multi-class classification and ordinal regres-
sion:

1. Firstly, the absence or presence of a linear order
on the classes gives rise to a different model struc-
ture for the two types of problems. In contrast to
their multi-class counterparts, models for ordinal
responses typically assume and approximate an
underlying latent variable that reflects the order
on the classes.

2. Secondly, multi-class classification and ordinal re-
gression models typically differ in the type of per-
formance measure they optimize. If a linear order
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on the classes can be assumed, then a performance
measure that takes this order into account must
be utilized, both for optimization and evaluation.

2. Ordinal regression

Since our methodology can be seen as an extension
of ordinal regression, we give a small review of some
key principles of it. Let us use the familiar multi-class
classification setting (ordinal regression can be seen as
a special case) to introduce some notations. The goal is
to learn a mapping from an input space X to a finite set
C = {C1, . . . , CK} containing K labels. To this end,
each object is usually represented by a D-dimensional
feature vector x ∈ X and a class label y ∈ C. A training
dataset T of N i.i.d. observations can then be denoted
as a set of couples {(x1, y1), . . . , (xN , yN )} with xi =
(xi,1, . . . , xi,D), in which we assume that the couples
(xi, yi) are realizations of the random vector (x, y).
Moreover, using this notation, an ordinal regression
problem can be seen as a special case of a classification
problem where the label set is endowed with a linear
order C1 ≺ C2 ≺ . . . ≺ CK .

In a standard machine learning setting, one aims to
find a mapping or model f : X → C that minimizes
the expected value of some regularized loss function,
i.e.

f̂(x) = min
f∈H
L(f,T) + λJ(f) , (1)

with L a loss function on the training dataset, H a
hypothesis space of models, J a penalty term for the
complexity of the model and λ a regularization param-
eter.

As mentioned in the introduction, the presence of an
order relation on the class labels has implications on
the model structure and on the type of loss function
that is used. Both of these implications are briefly
described next.

2.1. The latent variable motivation

Roughly speaking, an ordinal regression model f :
X → C maps a data object to one of the classes of C.
The vast majority of existing ordinal regression models
can be represented in the following general form:

f(x) =


C1 , if g(x) ≤ θ1
C2 , if θ1 < g(x) ≤ θ2
...
CK , if θK−1 < g(x)

(2)

with θ1, ..., θK−1 free parameters and g : X → R any
function that assigns a real value to a data object.

The function g allows to impose an ordering on a col-
lection of data objects and it is therefore in machine
learning often referred to as a ranking function or la-
tent variable function. The use of a latent variable can
be motivated by interpreting an ordinal scale as the
result of course measurements on a continuous scale.
As a consequence, the ordinal classes correspond to
non-overlapping intervals covering the entire real line.
Because of this, fitting an ordinal regression model can
be subdivided into two parts: the functional form of
the latent variable has to be estimated on the one hand
and the thresholds that define the non-overlapping in-
tervals have to be chosen on the other hand.

The proportional odds model (McCullagh, 1980) with-
out doubt the best known and most applied tech-
nique to represent ordinal responses, it follows nat-
urally from the latent variable interpretation. Instead
of fitting a decision rule f : X→ C, this type of model
defines a probability density function over the class la-
bels for a given feature vector x. The cumulative prob-
ability pk of observing a label smaller than or equal to
Ck is defined as follows:

pk(x) = P{y ≤ Ck | x} ,

with (x, y) an instance-label couple. In general, it is
assumed that

P{y ≤ Ck | x} = φ(g(x) + θk) ,

for k = 1, ...,K−1; with φ(·) any cumulative distribu-
tion function and θk the threshold parameter for class
Ck. When trying to fit this model to a dataset, it is (in
its most basic form) assumed that g(x) can be written
as a linear combination w · x of the inputs, where w
is a coefficient vector.

2.2. Performance measures

Another important difference between multi-class clas-
sification and ordinal regression can be found in the
loss function used to optimize and evaluate the model.
To evaluate the performance of a given multi-class clas-
sification model, the accuracy on a test dataset is typ-
ically measured, and a differentiable approximation of
accuracy such as the logistic loss or hinge loss is typ-
ically optimized on training data to fit the parame-
ters of the model. In an ordinal setting however, the
use of accuracy seems unnatural. For instance, when
the class labels are {bad, moderate, good}, classifying
a good instance as bad is worse than classifying it as
moderate. As a result, other performance measures
such as the concordance index have been proposed in
literature.
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3. Partial class memberships

In the previous section, objects were restricted to be-
long to a single class. In this section this restriction is
relaxed, resulting in partial class memberships. To this
end, each object will be linked with a K-dimensional
real-valued vector that will be called its partial mem-
bership vector. Each object has one unit of member-
ship, divided over the K classes. As a result, each
component of the partial membership vector is posi-
tive and the sum of all components of the vector equals
one (a type of data often referred to as compositional
data in the statistical literature (Aitchison, 1986)). In
a K-class problem, a partial membership vector y is a
vector within the K-dimensional simplex YK :

YK =

{
y = (y1, . . . , yK) ∈ RK | yi ≥ 0,

∀ i ∈ {1, . . . ,K};
K∑

i=1

yi = 1

}
. (3)

The i-th instance in a training set T will now be de-
noted

(xi,yi) =
(

(xi,1, . . . , xi,D), (yi,1, . . . , yi,K)
)
.

As another extension of the crisp setting, the pre-
dictive model that we aim to fit to the data will
be represented as f : X → YK , in which f(x) =
(f1(x), . . . , fK(x)), where we require

∑K
k=1 fk(x) = 1.

We could then choose f as a set of parameterized func-
tions for which the parameters are estimated through
optimization of the loss function

L(f(x),y) =
K∑

k=1

(fk(x)− yk)2 .

The choice of such a model seems justified since, when
there exists no order on the class labels, the following
multivariate model f can be assumed to underly the
data

y =


y1 = f1(x) + γ1,x

...
yK = fK(x) + γK,x

(4)

where γ1,x, . . . , γK,x are (dependent) error terms with
zero mean (the random part of the model) and the

following properties hold:

K∑
k=1

yk =
K∑

k=1

fk(x) = 1 ,∀x ∈ X , (5)

fk(x) + γk,x ≥ 0 , k = 1, ...,K; (6)
∀x ∈ X ,

K∑
k=1

γk,x = 0 ,∀x ∈ X , (7)

E[y | x] = f(x) ,∀x ∈ X , (8)
Ex[γk,x] = 0 , k = 1, ...,K . (9)

Given a full description of the components of (4) is not
a trivial task. First, let us reformulate this problem.
Suppose we observe an object with feature vector x,
whose partial membership vector is modeled by (4).
Which probability density functions would then be
possible for y? To be able to answer this question, a set
of real-valued functions f respecting (5) is needed, as
well as a complete description of the dependence struc-
ture of γ1,x, . . . , γK,x. Because of constraints (6)–(9),
the latter is not a simple task. As such, it is not our
aim to determine all possible distributions of y. In-
stead, we present an example of a setting in which the
conditional distribution of y given x, further denoted
as y | x, respects (5)–(9).

To start, consider a fixed feature vector x. Plugging
this feature vector into model (4) should produce a
random vector with a fully described probability den-
sity function y | x over the simplex satisfying (5)-
(9). A set of suitable functions f1, . . . , fK can easily
be found. Recall constraint (8), which requires that
E[y | x] = (f1(x), . . . , fK(x)). To accomplish this, we
can for instance use the Dirichlet distribution with its
parameter set β conditioned on x. The parameter set
β(x) = (β1(x), . . . , βK(x)) associated with the feature
vector x is obtained as

βk(x) = s fk(x) , for k = 1, . . . ,K ,

with s a positive real parameter. It can easily be shown
that such a model will respect constraint (9). In gen-
eral, using the Dirichlet distribution, the probability
density function of the partial class membership vec-
tor conditioned on the inputs takes the following form:

y | x ∼ Dir
(
β1(x), ..., βK(x)

)
. (10)

4. Partial ordinal class memberships

Model (4) can be used to describe partial ordinal class
memberships as well. However, when doing so, the
ordinal nature of the class labels is lost. In this section
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we will show that, through the addition of some extra
constraints on (4), the information provided by the
order on the classes can be preserved and incorporated
into the model.

4.1. Ordinality w.r.t. partial memberships

When the classes are ordered, this order is incorpo-
rated into the model through the use of a latent vari-
able. When considering the proportional odds model,
it can be seen that the highest classes (in the linear
order) become more likely as the value for the latent
variable increases. This property is key to any ordi-
nal regression model. As a consequence, we want to
have a similar property in our ordinal partial mem-
bership model. However, the general problem setting
does not define a linear order on the partial member-
ship vectors as it does on the classes. As a result, we
will have to define/assume a type of order on the set of
partial membership vectors which reflects the order on
the class labels. In this paper, we will assume a type
of order relation which is strongly related to the con-
cept of first order stochastic dominance (Levy, 2006).
First, let us introduce the notion of a cumulative par-
tial membership vector.

Definition 1 For the K-dimensional partial mem-
bership vectors y and f(x), the cumulative partial
membership vectors y = (y1, . . . , yK) and f(x) =
(f1(x), . . . , fK(x)) are defined as

yk =
k∑

`=1

y` and fk(x) =
k∑

`=1

f`(x) ,

for k = 1, . . . ,K.

The notion of cumulative partial membership vectors
can then be used in the following definition.

Definition 2 Given two partial membership vectors
y1, y2 ∈ YK , we say that y1 dominates y2 (denoted
y1 <SD y2) if the following holds for the cumulative
partial membership vectors y1 = (y1,1, . . . , y1,K) and
y2 = (y2,1, . . . , y2,K):

∀k ∈ {1, . . . ,K} : y1,k ≤ y2,k .

We say that y1 strictly dominates y2 if

y1 <SD y2 and y1 6= y2 . (11)

It can easily be seen that the dominance principle de-
fines a partial order relation on a set of K-dimensional
partial membership vectors. We will use this partial
order relation, combined with the latent variable in-
terpretation, to construct a model that can underly
partial class membership data on an ordinal scale.

Our model can be seen as a two-step process. Firstly,
the feature vector x of an object is mapped to a real
number, being the object’s value for the latent vari-
able. Secondly, a mapping is performed from this la-
tent variable to the space of partial membership vec-
tors. As before, a latent variable g(x) can be used to
construct a model f : X→ YK as follows

f(x) = h(g(x)) , (12)

where h = (h1, ..., hK) : R → YK will be called link
functions. Through the addition of random compo-
nents ε and γ1,x, . . . , γK,x, an ordinal variant of (4) is
obtained:

y =


y1 = h1(g(x) + ε) + γ1,x

...
yK = hK(g(x) + ε) + γK,x

(13)

satisfying (5)–(9).

In an ordinal regression setting, the latent variable mo-
tivation suggests that a monotone relationship exists
between the latent variable and the output (the pre-
dicted class label). In our partial ordinal class mem-
bership model, we want to preserve this monotone re-
lationship between the latent variable and the output
(which is in this case a partial membership vector). To
be able to speak of a monotone relationship between
a latent variable and a partial membership vector, we
will use the order implied by the dominance principle
described before. This results in the additional con-
straint given in the following definition.

Definition 3 The model f defined in (12) is called
monotone with respect to the dominance principle if
for any two feature vectors x1 and x2 the following
equivalence holds:

f(x1) <SD f(x2)⇔ g(x1) ≥ g(x2) .

Requiring a model to be monotone with respect to
the dominance principle imposes some constraints on
h. Different sets of constraints might lead to mono-
tone models and it is not our intention to present
all possibilities here. Instead, a simple method is
presented which will ensure monotonicity. Let us
start by defining the cumulative counterpart of h, as
h = (h1, . . . , hK) where

hk(u) =
k∑

l=1

hl(u) , for k = 1, . . . ,K; ∀u ∈ R,
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similar to what we did before for y and f . It can easily
be seen that the vector of functions h uniquely defines
the vector of functions h and vice verse. As a result,
a set of constraints imposed on h can be translated
into a set of constraints on h and vice verse. This du-
ality is exploited in the following obvious proposition
which states that requiring h1, . . . , hK−1 to be decreas-
ing functions suffices to obtain a monotone model.

Proposition 4.1 The model f defined in (12) is
monotone with respect to the dominance principle if
h1, . . . , hK−1 are decreasing functions.

As for model (4), we can look at (13) from a distribu-
tional point of view and use it to define a conditional
distribution function y | x. In this context we argue
that being monotone with respect to the dominance
principle is desirable for any model used to described
partial ordinal class memberships. Consequently, it is
desirable to retain this property when designing con-
ditional probability density functions for y | x. This
is formalized in the following definition.

Definition 4 Model (13) is called a monotone distri-
bution generating model with respect to the dominance
principle if for any two feature vectors x1 and x2, the
following equivalence holds

E[y1 | x1] <SD E[y2 | x2]⇔ g(x1) ≥ g(x2) ,

where yi | xi represents the output of model (13) con-
ditioned on an input xi.

The following proposition presents a setting in which
(13) is a monotone distribution generating model with
respect to the dominance principle.

Proposition 4.2 Model (13) is a monotone distribu-
tion generating model with respect to the dominance
principle if the following properties hold:

(i) h1, . . . , hK−1 are decreasing functions,

(ii) E[ε] = 0,

(iii) The conditional distribution of y | x is a
Dirichlet distribution with parameter set β(x) =
(β1(x), . . . , βK(x)) where

βk(x) = s hk(g(x) + ε),
for k = 1, . . . ,K; ∀x ∈ X

where s is a positive real parameter.

4.2. Performance measures

In the previous section, a general structure for ordinal
partial class membership models was developed. If
the performance of a model f has to be evaluated, a
performance measure respecting the ordinal nature of
the data is needed. To this end, we choose the mean
absolute error on the cumulative partial membership
vectors as a performance measure.

LMAEC(f(x),y) =
K∑

k=1

∣∣fk(x)− yk

∣∣ .
4.3. Learning ordinal partial class

memberships

In a machine learning context, the aim is to learn a
model of type (12), satisfying the constraints given in
Proposition 4.1. The proportional odds model as in-
troduced in Section 2.1 naturally establishes a mono-
tone relationship between the latent variable and the
estimated class probabilities, since the logistic func-
tions fitted by this model on the latent variable axis
respect the constraints given in Proposition 4.1. As a
result, the fitted logistic curves are particularly useful
to model data with an underlying model of type (12).
Based on these findings, we propose an extension of
the proportional odds model for learning partial class
memberships in an ordinal setting. To this end, we
define the logit of the cumulative partial membership
vector as follows:

logit(fk(x)) = log
( fk(x)

1− fk(x)

)
. (14)

This logit can be modeled as a (linear) function of the
features

logit(fk(x)) = w · x + θk , (15)

for k = 1, . . . ,K − 1.

Traditionally, proportional odds models are fit to the
data through a likelihood maximization. The use of
maximum likelihood implies probabilistic interpreta-
tion of the partial membership vectors, an assump-
tion which is often no valid. However, the likelihood
framework results in an optimization problem which
can easily be solved to optimality by a gradient based
algorithm. Moreover, experiments indicate that the
loss function which is obtained within the likelihood
framework can be considered as a reasonable approxi-
mation to LMAEC.

4.4. Kernelized proportional odds

In its most basic form, the proportional odds model
models the logits as linear functions of the input. In
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Figure 1. (a) Representation of the functions h1, . . . , h4 in
the experimental setup. (b) An overview of the perfor-
mance in terms of LMAEC.

case of partial memberships, we give two reasons why
this is too restrictive.

First of all, there is no reason to assume that the latent
variable g(x) can be modeled through a linear function
of the inputs. Often, the assumption of linearity is
wrong. To overcome this problem, a kernelized version
of the proportional odds model is proposed. Here, the
logit of the k-th class is modeled as follows:

logit(fk(x)) =
N∑

i=1

αiK(xi,x) + θk ,

with α = (α1, . . . , αN ) a vector of parameters and
K : X × X → R a Mercer kernel. Model param-
eters can be estimated through maximizing the L2-
penalized maximum likelihood function.

Secondly, when the proportional odds model is used to
predict partial memberships, h1, . . . , hK−1 are approx-
imated by logistic functions. In practice, there is no
reason to assume that this will result in a good approx-
imation. Experiments indicated that, for h1, . . . , hK−1

strongly deviating from logistic functions, the increase
in flexibility obtained through the kernelization re-
sulted in an improved performance, even in case of
a linear function for g(x).

4.5. Experiments

In this section, the predictive capabilities of the kernel-
ized proportional odds model for partial memberships
(POPM) are demonstrated through an experiment on

artificial data. In this experiment, we consider the set-
ting of inferring partial ordinal class memberships with
7-dimensional inputs and 4-dimensional outputs, rep-
resenting partial class memberships for 4 classes. The
performance of POPM is compared to several meth-
ods. As a baseline method, the performance of the
arithmetic mean as a predictor was considered. Other
methods were the kernelized multi-class logistic regres-
sion model for partial memberships (MKLR) and a
random forest regression model which was extended
for partial ordinal class memberships (RF). For the
kernelized methods, we tested the RBF kernel as well
as the linear kernel.

The artificial data was generated as follows. Firstly,
feature vectors were drawn from a uniform distribu-
tion over [1, 2]7. Secondly, the partial membership
vectors were generated using (12) following Proposi-
tion 4.2 where s = 100 with h1, . . . , hK−1 as shown in
Figure 1 and

g(x) = 9

√∣∣∣∣x1 + x2 − x3 − x4

x5 + x6 − x7

∣∣∣∣− 1.2 .

To train the models, a training set containing 20 in-
stances and a validation set containing 20 instances
were created. To test their performance, a test set
containing 1000 instances was created as well. The
performance of each method in terms of the LMAEC

is shown in Figure 1. The boxplots in this figure are
the result of 30 repetitions of the data generation pro-
cess. It can be seen that POPM outperforms the other
methods in this example.

5. Summary

We have extended the ordinal regression setting to en-
able it to deal with partial memberships. The princi-
ple of stochastic dominance was used to define a par-
tial order on partial membership vectors. Finally, a
kernelized version of the proportional odds model was
proposed to increase the flexibility and applicability in
practical situations.
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