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Abstract—We propose a measure for the validation of clusterings
of gene expression data. This measure is also useful to estimate
missing gene expression levels, based on the similarity information
contained in a given clustering.
It is shown that this measure is an improvement over the figure
of merit, an existing validation measure especially developed for
clusterings of gene expression data.
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ure of merit.

I. INTRODUCTION

One of the challenging fields in bioinformatics is the
analysis of gene expression data, for example the inference
of gene regulatory networks [1]. Typically the experimental
data for gene expression analysis consists of the expression
levels of a large number of genes for a small number of
experimental conditions, due to the high cost of microarray
experiments. This explains why clustering is a commonly used
and important preprocessing step in gene expression analysis,
since it ensures a reduction of dimensionality by grouping
genes with similar expression behaviour together. The actual
gene expression analysis can then be done on, for example, a
set of representative genes, selected from each cluster.
Since there is no precise and workable definition of ’clus-
ter’ [2], different clustering algorithms can generate different
clusterings, i.e. sets of clusters, and even a given clustering
algorithm can produce different clusterings for different values
of initial parameters (e.g. the number of initial centers).
This necessitates the use of validation measures to compare
different clusterings and to select one that is appropriate for
the application under consideration.
An interesting validation measure in the context of gene
expression analysis is the figure of merit [3]. In essence, this
measure applies a clustering algorithm to all but one experi-
mental condition in a data set, and the left-out condition is used
to assess the predictive power of the clustering algorithm. This
predictive power is then used as validation measure for the
considered clustering algorithm. The figure of merit is more
extensively explained in section II.
Instead of using the figure of merit to validate a clustering
algorithm, we use it to validate a clustering. As explained
above these are two different things, since a given clustering
algorithm can still generate different clusterings. Thus having
an appropriate clustering algorithm does not guarantee that
an acceptable clustering will be produced. In our opinion it
is therefore more relevant to compare different clusterings,
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generated by whatever clustering algorithm(s), if the final goal
is not to compare clustering algorithms. In section III we
describe the use of the figure of merit to validate clusterings of
gene expression data, while in section IV some improvements
are given. Our methodology is then applied to several data
sets. These data sets are described in section V and the results
are analyzed in section VI.
Two questions are addressed in this paper: 1. is the proposed
measure an improvement over the figure of merit for estimat-
ing missing gene expression levels and 2. is it an improvement
for selecting an appropriate number of clusters?

II. RELATED WORK

Over time a range of validation techniques for clusterings
have been developed [4]. In this paper we concentrate on
the figure of merit [3], which is motivated by the jackknife
approach. Suppose a data set D consisting of the expression
profiles of genes g1, . . . , gn is given. We shall restrict attention
to the case where the expression profiles are time series,
although the figure of merit is applicable to any kind of
experimental conditions. Denote the time points by t1, . . . , tm
and the expression level of gi at time point tj by gi(j).
The data set D can thus be described as: D = {gi(j) | i =
1, . . . , n, j = 1, . . . ,m}. Define D \ tp = {gi(j) | i =
1, . . . , n, j = 1, . . . , p− 1, p+ 1, . . . ,m}.
Now a clustering algorithm is applied to D \ tp. Suppose
that there are k clusters C1, . . . , Ck and let µCl

(p) be the
average expression level for time point tp of genes in cluster
Cl, i.e. µCl

(p) = 1/|Cl|
∑

gi∈Cl
gi(p), where |Cl| denotes the

number of genes in Cl. If the clusters are meaningful, similar
genes should be grouped together, implying that the average
expression level µCl

(p) should be close to the expression
levels gi(p), gi ∈ Cl (where it is implicitly understood that
the data set is normalized appropriately). The figure of merit,
FOM(p, k), for k clusters using time point tp as validation
is then defined as

FOM(p, k) =

√√√√1/n
k∑

i=1

∑
gi∈Cl

(gi(p)− µCl
(p))2 (1)

The aggregate figure of merit is an estimate of the total
predictive power of the algorithm over all time points:

FOM(k) =
m∑

p=1

FOM(p, k) (2)

In [3] it is noticed that the FOM shows a declining figure
with the number of clusters, for all examined data sets. To
overcome this bias a compensating factor is introduced, giving
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the adjusted figure of merit FOMA(k):

FOMA(p, k) =
√
n/(n− k)FOM(p, k) (3)

FOMA(k) =
m∑

p=1

FOMA(p, k) (4)

However this adjusted FOM still shows a significant bias
towards the number of clusters and the authors of [3] state
that ”it is not safe to compare clustering results with different
numbers of clusters”.

III. USE OF THE FIGURE OF MERIT TO VALIDATE
CLUSTERINGS

Instead of using the ideas behind the figure of merit to
compare different clustering algorithms, we use them to com-
pare different clusterings. This implies that given clustering
algorithms are applied to the complete data set D. Given a
set of clusterings, possibly produced by different clustering
algorithms, the question is then how to choose among them.
To validate these clusterings we rely on the basic idea behind
the figure of merit: if the clusters of a considered clustering are
of high quality, meaning that each cluster contains very similar
genes, it should be possible to make a reliable estimate of a
missing gene expression level gi(p) based on the expression
levels of the other genes in the same cluster at the same time
point. Notice that to validate a given clustering it is only
supposed that gene expression levels are missing. In fact the
true gene expression levels are needed to define the FOM as
the root mean square deviation of the estimated expression
levels from the true expression levels, see (2).
Practically speaking, the only difference with the FOM out-
lined in section II is that the clustering algorithm (or algo-
rithms) is applied to the complete data set. This means that
formulas (1)-(4) remain valid.
Since the FOM represents the error in estimating gene expres-
sion levels, based on the similarity information contained in
the given clustering, it is clear that the lower the FOM the
higher the quality we ascribe to this clustering.

IV. IMPROVEMENTS ON THE FIGURE OF MERIT

A. Improvement 1

A first improvement on the figure of merit we propose is
based on the observation that the most common measure for
coexpressed genes is the correlation; in [6] it is argued that
this measure is better suited to detect coexpressed genes than,
for example, Euclidean distance. For this reason, we define the
distance between two genes gi and gj as 1− c(gi, gj), where
c(gi, gj) denotes the correlation between the time series of gi

and gj :

c(gi, gj) =
∑m

t=1(gi(t)− ḡi)(gj(t)− ḡj)√∑m
t=1(gi(t)− ḡi)2

√∑m
t=1(gj(t)− ḡj)2

(5)

where ḡi and ḡj denote the average expression level of gi and
gj over time. This distance measure is used in clustering the
data sets from section V.
Now, the estimate for gi(p), gi ∈ Cl, is given by µCl

(p) (see
section II), the average expression level at time point tp of all

genes belonging to Cl. However, this estimate is not consistent
with the correlation distance used to cluster the genes. For
two genes can have a high correlation, while their expression
levels are very different, since the correlation distance takes
the shape of the genes into account and not their expression
levels. Differently stated: if given genes are similar in terms
of correlation or ’behavior’, they need not be similar in terms
of expression levels.
Normalizing the data, for example using the z score trans-
formation, can only partly solve this problem, since it is
still possible that similar genes have incomparable expression
levels. This follows from the fact that an outlier in the original
data set is still an outlier in the z-transformed data set.
Our idea is to make the expression levels of two genes
similar, while the correlation between them, i.e. their shape,
is unaltered. Observe that from formula (5) it follows that
c(gi, aj gj + bj) = c(gi, gj), where aj ∈ R and where we
define bj = (bj , . . . , bj)T ∈ Rm. Given that we want to
estimate gi(p), gi ∈ Cl, we transform the genes gj ∈ Cl

such that their expression levels are as close as possible to
the expression levels of gi, while the correlation between gj

and gi is unaltered. Thus the following is to be minimized:

E(aj , bj) = 1/2
m∑

t=1

(aj gj(t) + bj − gi(t))2

The necessary condition for this is that the partial derivatives
equal zero:

∂E

∂aj
= aj

m∑
t=1

g2
j (t) + bj

m∑
t=1

gj(t)−
m∑

t=1

gi(t)gj(t) = 0 (6)

∂E

∂bj
= aj

m∑
t=1

gj(t) +mbj −
m∑

t=1

gi(t) = 0 (7)

The solution is given by

aj =
m

∑m
t=1 gi(t)gj(t)−

∑m
t=1 gj(t)

∑m
t=1 gi(t)

m
∑m

t=1 g
2
j (t)− (

∑m
t=1 gj(t))2

(8)

bj =
∑m

t=1 gi(t)− aj

∑m
t=1 gj(t)

m
(9)

Denote the transformed genes by τi(gj) = ajgj + bj with aj

and bj given by (8) and (9). The subscript i in τi stresses the
point that the transformation is done with gi as ’reference’.
We then estimate gi(p) as τi(µCl

(p)), defined as:

τi(µCl
(p)) =

1
|Cl|

∑
gj∈Cl

τi(gj)(p)

The transformation τi thus ensures that the similarity between
gj and gi in terms of expression levels is maximized, while
their similarity in terms of correlation remains constant. In
particular a given clustering is thus not influenced by this
transformation, since the distances between each pair of genes
is the same before and after this transformation.

B. Improvement 2

An important cause of the bias towards the number of
clusters is probably the fact that for the estimation of gi(p)
with gi ∈ Cl all expression levels at time tp of genes belonging



to Cl are used, thus including gi(p) itself. Since for the purpose
of validation it is supposed that gi(p) is unknown, it is in
fact not allowed to use gi(p) in the estimation of it. Notice
that as the number of clusters grow, the number of genes
per cluster declines (on average), implying that the relative
weight of gi(p) in the estimation of it increases. This follows
from the fact that gi(p) is estimated as µCl

(p), defined as
1/|Cl|

∑
g∈Cl

g(p). In the most extreme case |Cl| = 1, i.e.
Cl = gi, and thus µCl

(p) = gi(p) implying a perfect estimate.
This is of course an unfair method to make estimations and it
explains how the bias towards the number of clusters arises.
Thus we redefine µCl

(p) as follows: µCl
(p) = 1/(|Cl| −

1)
∑

g∈Cl\{gi} g(p). If |Cl| = 1 we can estimate gi(p) as, for
example, the average of gi(p−1) and gi(p+1) if 1 < p < m,
and as gi(2) if p = 1 and as gi(m− 1) if p = m.

C. Improvements 1 and 2 together

The improvements proposed in sections IV-A and IV-B can
be combined by defining τi(µCl

(p)) as follows:

τi(µCl
(p)) =

1
|Cl| − 1

∑
gj∈Cl\gi

τi(g)(p) if |Cl| > 1

=
gi(p− 1) + gi(p+ 1)

2
if |Cl| = 1, 1 < p < m

= gi(2) if |Cl| = 1, p = 1
= gi(m− 1) if |Cl| = 1, p = m

We thus redefine (1) as a new measure H:

H(p) =

√√√√1/n
k∑

i=1

∑
gi∈Cl

[gi(p)− τi(µCl
(p))]2 (10)

H =
m∑

p=1

H(p) (11)

V. DATA SETS

A. Artificial data

Since the validation measure is intended to use for cluster-
ings of gene expression data and since attention in the previous
sections was directed towards time series data, our goal here
is to generate artificial data that mimics gene expression time
series. In particular we simulate periodically expressed genes
by introducing some noise to the sine function f(x) = sin(x).
Suppose that we want to generate k clusters of n genes with
m time points. Predefining the number of clusters allows us to
test whether the FOM and the proposed measure H are able
to detect this number of clusters.
We then define k possible translations of the independent vari-
able: Tx = {(j2π)/k | j ∈ {0, . . . , k − 1}}. For each artificial
gene g a translation is randomly selected from Tx, denoted
as Tx(g). Each artificial gene g is also randomly translated
in the direction of the Y axis. This translation is denoted as
Ty(g) and is chosen to be uniformly distributed between 1 and
3. Furthermore for each gene g a random amplitude A(g) is
generated, also uniformly distributed between 1 and 3.
Thus the time series for an artificial gene g is given by
fg(x) = A(g) sin(x+ Tx(g)) + Ty(g).

Finally, from a given time series fg we have to select m
time points. For this selection we introduce two levels of
randomness: one on the level of the gene and one on the
level of the time points. For each gene g a random number
R1(g) is generated, Gaussian distributed with mean 0 and
standard deviation σ1. For each gene g and each pth time
point, p = 1, . . . ,m, a second Gaussian number R2(g, p)
is generated with mean p − 1 and standard deviation σ2.
The value of the pth time point, tp(g), is then defined as
tp(g) = R1(g) + R2(g, p) + Tx(g). Whereas R1(g) is fixed
for each time point, the value of R2(g, p) is dependent on the
time point.
The value g(p) is given by g(p) = A(g) sin(tp(g)) + Ty(g).

B. Biological data set: S. pombe

We considered also a real gene expression data set: the
Schizosaccharomyces pombe cell cycle data set reported in [5].
The data set consists of three elutriations and 20 time points.
We randomly selected 150 genes for which all expression
levels over all time points and all elutriations are non missing.
For each gene the expression level at a certain time point is
defined as the average of its time points over the elutriations.

VI. RESULTS AND DISCUSSION

Figures 1 and 2 show H (11), the FOM (2) and the adjusted
FOM (4) as a function of the number of clusters.
Clusterings were generated for the data sets described in
section V. All these data sets were normalized to have mean
0 and variance 1, as in [3].
The clusterings were generated with the k-means algorithm
[2], using the implementation of Forgy [7]. The distance
measure used to cluster the data is the correlation distance,
see section IV-A. K-means requires to predefine the number
of initial centers; we vary this number from 2 to 15. Forgy
k-means allows for empty clusters, implying that the number
of clusters does not necessarily equal the number of initial
centers. Thus in figures 1 and 2 the number of times that
a certain number of clusters was constructed is also shown,
displayed as the percentage of the total number of clusterings
generated. It is thus possible that a certain number of clusters is
never generated, even if the corresponding number of initial
centers lies in the range from 2 to 15. If this is the case,
we arbitrarily give H the maximum value of all the available
values for H (i.e. for which the corresponding percentage of
clusters is non zero). The same is done for the FOMs.

A. Artificial data

For all artificial data sets we choose n = 60,m = 18 and
k = 3. The values for the parameters σ1 and σ2 were chosen
from {0.025, 0.075}, giving four possible combinations. An
example of an artificial data set with σ1 = 0.025, σ2 = 0.075
is shown in Fig 3. For each combination of σ1 and σ2, 10
data sets were generated and the resulting values for H , the
FOM and the adjusted FOM were averaged over these data
sets. The results are shown in figure 1.
The most obvious observation is that the value of H is much



lower than that of the FOMs. Thus if the purpose is to
estimate the value of missing expression levels, based on the
information of a given clustering, the measure H is of much
more use than the FOM.
Secondly, although the FOMs do not show a bias for the
artificial data sets, they do not show a clear minimum either.
Thus if a number of clusters is to be chosen, solely based on
the FOMs in figure 1, it would not be a reassuring choice.
Furthermore, the number of clusters at the minimum FOM
and minimum adjusted FOM is for all data sets different
from 3. Even for the data set with the lowest level of noise
(σ1 = σ2 = 0.025), both FOMs give an unexpected (and
probably undesired) optimal number of clusters of 9.
On the other hand, the measure H is minimal at three clusters
for σ1 = σ2 = 0.025 and σ1 = 0.025, σ2 = 0.075. Notice
that for these two data sets, H shows a sharp decline from
2 to 3 clusters, where it reaches a minimum and then shows
a ascending behavior. This ’convex behavior’ would be much
more pronounced if we would display only H on the figure.
Although the minimal H for σ1 = 0.075, σ2 = 0.025 and
σ1 = σ2 = 0.075 appears at 5 clusters, the value at 3
clusters is also low. An interesting observation is that for these
two data sets H does not show a clear minimum. This can
possibly indicate that there is either no number of clusters that
is significantly better than other numbers of clusters or that
either the clustering algorithm is not able to detect the most
appropriate number of clusters. This last possibility follows
from the fact that a given clustering algorithm does not nec-
essarily recognize the ’true’ number of clusters. If this is the
case, i.e. if our Forgy k-means constructs clusterings consisting
of three clusters of low quality, it is not to be expected -
and even undesired - that the considered validation measures
consider these clusterings as superior. Further research with
several clustering algorithms and more data sets is needed
to hypothesize whether the behavior of H for the last two
artificial data sets is due to a deficiency in the considered
clustering algorithm, due to a deficiency in H or that too
much noise is present to have a number of clusters that is
significantly better than others. This last possibility is unlikely,
since by visual inspection we concluded that for these noise
levels there are still three well-separated clusters.

B. Biological data

The results for the biological data set are shown in Fig 2.
For each number of initial centers the clustering algorithm was
applied ten times, since the resulting clustering is dependent
on the exact choice of initial centers. The averaged values of
H and the FOMs are shown.
Since the real number of clusters is not known, it is impossible
to state whether the validation measures perform well in
this case. However, it is interesting to notice that all three
validation measures have their optimum in the same number
of clusters, 14.

VII. CONCLUSION

We present a validation measure to compare different clus-
terings, produced by whatever clustering algorithm(s), in case

Fig. 2. Validation measures on real biological data

Fig. 3. Example of artificial data set with σ1 = 0.025, σ2 = 0.075

of gene expression data. Our methodology is an improvement
over the figure of merit, a measure that assess the predictive
power of a clustering or clustering algorithm, based on the
information contained in a given clustering. The most obvious
improvement of the proposed measure over the figure of merit
is that it gives much better estimates of missing expression
levels. For the examined artificial data sets it also gives the
optimal number of clusters, if the level of noise is low.
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