
Nullspace of the Static MFIE Operator and its Effect on the
Numerical Solution of BIE’s

Kristof Cools*1, Francesco P. Andriulli2, Femke Olyslager1, and Eric
Michielssen2

1 Department of Information Technology (INTEC), Ghent University
2 Department of Electrical Engineering and Computer Science (EECS),

University of Michigan

Introduction

Boundary integral equations are often used to simulate scattering by closed perfect
electrically conductors (PEC). Among the many available alternatives, the electric
and magnetic field integral equation (EFIE and MFIE) are the most popular; both
can be formulated in the frequency and time domains. The EFIE is more versatile
than the MFIE: it applies to open structures and wires, and is easily modified to
account for surface resistances and impedances. Moreover, the EFIE typically is
more accurate than the MFIE. That said, there are situations were the MFIE is the
more sensible choice. Indeed, the linear systems resulting upon discretization the
MFIE generally are better conditioned than those resulting upon discretization the
EFIE. This is because the MFIE is an equation of the second kind whereas the EFIE
is an equation of the first kind. The spectrum of the former is bounded and has
a finite non-zero accumulation point, while the latter has a spectrum accumulating
both at zero and infinity. This does not mean that the MFIE is devoid of any
spectrum related problems. In the moderate to high frequency regime, the MFIE is
ill-posed at frequencies where the cavity formed by the scatterer supports resonant
modes. The traces of these resonant fields reside in the nullspace of the MFIE
operator. After discretization, the existence of these resonant fields results in ill-
conditioned systems. In the low frequency regime, however, the MFIE generally is
free of resonances when applied to simply connected geometries. However, applied
to non-trivial topologies the picture becomes more complicated. Indeed, as will be
shown in this contribution, the static MFIE operator has a nullspace when applied to
torus-like geometries. And although it makes no sense to use the MFIE in the static
regime, the presence of this nullspace definitely affects quasi-static simulations. In
this paper, the construction of a basis for the nullspace of the static MFIE operator
will be sketched and the effect of its existence on the MFIE-based simulation of
non-static frequency domain and time-domain problems will be elucidated.

Equations and Discretization

Since this contribution focuses on the effects of a non-trivial nullspace of the MFIE
operator on both frequency domain and time-domain computations, some notational
conventions are introduced to distinguish both cases. Transient currents and fields
are represented using bold upper case Roman symbols (H(r, t),J(r, t)). Their
frequency domain counterparts are denoted by bold lower case symbols (h(r), j(r));
their frequency dependence is suppressed. Time-domain operators are denoted by
calligraphic symbols (K) and frequency domain operators by Roman capitals (K).
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In discretized form, frequency domain quantities are recognized by the absence of a
temporal subscript. Frequency domain and time-domain MFIE’s are disambiguated
by including the prefixes FD and TD. All transient signals are assumed causal (i.e.
they vanish for t < 0).

Consider a closed PEC scatterer with boundary Γ and exterior normal n̂, which is
illuminated by an incident wave H i(r, t) or hi(r). Enforcing the magnetic boundary
condition on Γ yields the FD-MFIE

n̂ × hi(r) =
{

1
2

+K

}
[j(r)] =

j(r)
2

− n̂ ×
∫

Γ
dS′∇× e−jkR

4πR
j(r′) (1)

and the TD-MFIE

n̂ × H i(r, t) =
{

1
2

+ K
}

[J(r, t)] =
J(r, t)

2
− n̂ ×

∫
Γ
dS′∇× J(r′, t−R/c)

4πR
, (2)

for all r ∈ Γ and t > 0. Schemes for discretizing these equations are described in
[1, 2], and yield the FD-MFIE method of moments (MOM) system

(
1
2
I + K

)
· J = Hi (3)

and the TD-MFIE marching-on-in-time (MOT) system

1
2
I · Jj +

kmax∑
k=0

Kk · Jj−k = Hi
j . (4)

The latter system can be solved for all Jj , starting with J0. Both systems typically
are solved iteratively. The condition number of the matrices that need to be inverted
(i.e. K + I/2 and K0 + I/2) is therefore of utmost importance. Moreover, the MOT
system can be unstable; this means that the excitation will couple to spurious non-
decaying regime solutions that pollute the physical solution. This effect is most
pronounced after the forcing term has decayed.

Nullspace of the static MFIE operator

In the zero frequency limit, the FD-MFIE becomes

n̂ × hi(r) =
{

1
2

+Ks

}
[j(r)] =

j(r)
2

− n̂ ×
∫

Γ
dS′∇× 1

4πR
j(r′). (5)

In the case where Γ is an N -torus, i.e. a generalized torus with N holes, the static
MFIE operator 1/2+Ks has a non-trivial nullspace comprisingN linear independent
current configurations.

The construction of these nullspace elements will now be sketched. This construction
follows the theory of [3], applied to the MFIE operator. Denote the interior of the
PEC by Ω− and its exterior by Ω+. Now let Li be a closed loop in Ω−, circling
only hole i (once) and denote by l̂ the tangential unit vector along this loop. The



magnetic field caused in Ω+ by a current of unit amplitude running along Li, in the
absence of the PEC is

hi,0(r) =
∫

Li

dl′∇ 1
4πR

× l̂
′
dl′. (6)

A second contribution is defined by hi,1(r) = ∇ψ(r) where ψ(r) is the unique
bounded solution in Ω+ of

∇2ψ = 0,
∂ψ

∂n
= −n̂ · hi,0. (7)

Since
∫
Γ dS

′n̂ · hi,0(r) =
∫
Ω+ dV

′∇ · hi,0(r) = 0, the Neumann-condition is viable.
The field hi = hi,0 + hi,1 in Ω+ now obeys

∇ · hi = 0, ∇× hi = 0, n̂ · hi = 0. (8)

If the surface current ji(r) = n̂ × hi(r) is introduced on Γ and the magnetic field
is extended by zero in Ω−, this configuration of bounded fields and sources fulfills
the Maxwell equations and jump conditions in all of space and obeys the PEC
boundary conditions for the magnetic field. Therefore, the current ji(r) resides in
the nullspace of the static MFIE operator. Furthermore, it can be proven that the
N currents ji(r) thus constructed form a basis for the nullspace of the static MFIE.

Numerical Results

Both the FD-MFIE-MOM and TD-MFIE-MOT system are affected by the presence
of a non-trivial nullspace of the static MFIE operator. In the case of the FD-
MFIE equation, the nullspace of the static operator resides approximately in the
nullspace of the low-frequency operator. The FD-MFIE-MOM system thus becomes
ill-conditioned. In the case of the TD-MFIE equation, the presence of the nullspace
results in a constant amplitude non-physical tail superposed on the true solution.

Consider a torus with large radius of 1 meter, and small radius of 0.25 meter which
is discretized using 768 unknowns. In the FD simulations, the torus is illuminated
by a plane wave

hi(r) = ẑe−jω/cx̂·r (9)

with ω = 29.979 MHz. To provide a comparison, a sphere of radius 1 meter dis-
cretized using 771 unknowns was illuminated by the same field. A singular value
decomposition of the system matrices was performed (Fig. 1(a)). The singular value
spectrum of the torus’ system matrix shows a singular vector that is approximately
in the nullspace. The corresponding singular vector was computed and is plotted in
Fig. 2(a). The TD simulations were done using an incident field of the form

H i(r, t) =
4

T
√
π

ẑe−γ2
(10)

with γ = 4
T (ct− ct0 − x̂ · r), T = 12.0 meter, t0 = 60.042 ns, and using a time

step ∆t = 1.0007 ns. A polynomial eigenvalue analysis [4] was performed on the
resulting system, revealing the presence of a slowly oscillating non-decaying mode
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Figure 1: Singular value spectrum of MFIE-MOM system for the torus and the
sphere (a). Polynomial eigenvalues (b) and solution (c) of MFIE-MOT system for
the torus.

(a) (b)

Figure 2: Singular vector of the MFIE-MOM system belonging to the smallest
singular value (a) and polynomial eigenvector belonging to the pole near 1 of the
MFIE-MOT system (b).

(Fig. 1(b)). This mode can be found in the solution of the TD-MFIE-MOT system
(Fig. 1(c)). The eigenvector corresponding to this pole was computed and plotted.
Fig. 2(b) shows this is the same current distribution causing the near zero singular
value of the frequency domain system matrix.
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