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Abstract 

Evaluation of genetic diversity is of great interest for the management of 

germplasm collections and breeding programs. Management can be efficient when 

the evaluation is focused on a subset of accessions that represents the variability 

observed in the whole germplasm collection. Most core sets have been developed for 

seed crops using different approaches and sampling size to select entries on the basis 

of genetic and/or phenotypic data, while few studies on perennial crops have been 

published. 

Here, we proposed a core collection for cultivated olive (Olea europaea L.) 

using both Simple Sequence Repeat (SSR) markers and phenotypic traits by testing 

different sampling approaches including stratified and non-stratified methods. 

Twelve SSR markers were used to construct a core subset from an initial collection 

of 505 single genotypes sourced from 14 Mediterranean countries. Among all the 

sampling methods, we showed that a sample size of 12.5% was most suitable in 

capturing all the observed alleles using the M-method approach. Based on both SSR 

and phenotypic data, we established an initial core set, including the main 

Mediterranean varieties, which displayed the highest genetic and phenotypic 

variability. No obvious genetic structure was indicated when the core subset was 

analyzed with Principal Coordinate analysis (PCoA). Our results gave an efficient 

basis as a first step for olive association mapping. The constructed core subset could 

be further evaluated for traits of agronomic interest, leading to association between 

the allelic variation and the phenotypic variability. 

 

INTRODUCTION 

Ex-situ conservation of genetic resources is important to preserve adaptive 

characters, to prevent erosion and extinction of local varieties as well as to enable the use 

of outstanding accessions with interesting genes in breeding and selection programs. 

Allelic diversity in germplasm has been used to understand the genetic basis of complex 

traits and to identify genes related to phenotypic variation for specific traits (Zhu et al., 

2008). However, the management, characterization and use of large germplasm 
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collections are frequently unfeasible and inefficient due to cost and time constraints. 

Genetic resources can be more efficiently managed if they are focused on a subset of 

accessions known as a core collection (or core subset) which includes as much variability 

as possible from the whole collection (Frankel and Brown, 1984). Among all the methods 

proposed to construct core subsets, two are the most used: stratifying method (Brown, 

1989; Franco et al., 1998) and maximizing method (M-method; Schoen and Brown, 1993) 

implemented in the MSTAT software package (Gouesnard et al., 2001). Recently, an 

advanced stochastic local search method attempting to optimize a single or multiple 

genetic parameters simultaneously has been proposed and implemented in the Core 

Hunter program (Thachuk et al., 2009). 

During the last ten years, many core subsets have been published for diverse 

plant species, including some perennial fruit crops. These core subsets were made using 

different eco-geographical, agro-morphological or genetic data (McKhann et al., 2004; 

Franco et al., 2006; Le Cunff et al., 2008; Escribano et al., 2008; Chung et al., 2009; 

Santesteban et al., 2009;). However, despite the social-economic importance of the olive 

species (Olea europaea L.) and its broad genetic diversity (more than 1,200 varieties; 

Bartolini et al., 1998), no core subset has been developed so far. 

In this study, we propose an initial core collection for cultivated olive species 

using 12 nuclear SSR markers and 38 phenotypic traits. Different sampling methods were 

compared and the representativeness of the overall genetic diversity of the constructed 

core subset was studied.  

MATERIAL AND METHODS 

Data set 

A total of 561 accessions, maintained in the ex-situ world olive germplasm bank 

at the experimental orchard of Tassaoute, INRA Marrakech, Morocco (WOGB 

Marrakech), were characterised using 12 nuclear SSR loci (Haouane et al., 2011). 

Phenotypic data was taken from published data based on the variety name as an 

identification key (Bartolini et al., 1998; Bartolini, 2008). Data of 38 agronomic traits 

classified into 114 classes according to standards described by the International Olive Oil 

Council (IOOC) was compiled for 419 varieties from different countries. 

Comparison of different sampling methods  

Six approaches using only SSR data were evaluated to compare the performance 

of the current state-of-the-art methods to construct core sets: (i) Random sampling (R-

method); (ii) Maximizing method (M-method): maximizing the number of alleles at each 

locus using the MSTRAT software; (iii) Simulated annealing method (SA-method): using 

the PowerMarker v3.25 software (Liu and Muse, 2005) under the criterion of optimizing 

the genetic diversity (GD) or the number of alleles (NA); (iv) Advanced stochastic local 

search method (SLS-method): using the pseudo index parameter α in the range of [0-1] 

implemented in Core Hunter software (Thachuk et al., 2009) [core sets were first formed 

by optimizing each of the four parameters independently of the others {single; average 

Modified Rogers distance (MR), Shannon diversity index (SH), coverage of alleles (CV) 

and expected proportion of heterozygous loci (He)}, then, the Core Hunter program was 

run to optimize both MR distance and SH diversity index (double) and finally, the four 

measures were optimized simultaneously (multiple) with equal weight assigned to each 

genetic parameter]; (v) Logarithmic method (L-method): 11 groups were defined based 

on genetic data set (data not shown), [for each group, individuals were selected 
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proportional to the logarithm of the number of accessions in that group by maximizing the 

number of alleles using MSTRAT software]; (vi) Proportional method (P-method): based 

on the 11 defined groups, selection of individuals was proportional to the number of 

accessions in each group by maximizing the number of alleles in that group. For each 

approach, 20 independent runs were performed. 

To define the preliminary core collection, genotypic and phenotypic data were 

considered. For each core set sampled with each sampling method, the Shannon-Weaver 

phenotypic diversity index (Hc; Hutcheson, 1970) was calculated. 

Representativeness of overall diversity genetic 

Principal Coordinate Analysis (PCoA) was performed with the GenAlex 6.1 

macro program (Peakall and Smouse, 2005) to provide a spatial distribution of the 

proposed core collection.  

RESULTS AND DISCUSSION 

Comparison of different sampling methods 

Based on 12 nuclear SSR loci, the analysis of 561 accessions revealed 505 single 

genotypes with 210 alleles of which 24 alleles were observed only once (Haouane et al., 

2011). Sixty four cultivars (12.5%) were necessary to capture all the alleles using the M-

method and SLS method when optimizing the CV. The Core Hunter program was used to 

construct core sets by optimizing each genetic parameter independently of the others 

(single). For the 12.5% sample size (Table 1), the single SLS method was able to select 

better core sets than all the other methods with respect to the single measure being 

optimized, except for the M-method for the coverage of alleles (CV). While the Core 

Hunter program is able to select core subsets which meet or exceed those chosen by other 

programs for a particular genetic parameter, other parameters not considered during 

optimization were highly affected. For instance, when Core Hunter attempted to optimize 

CV, selected cores had lower values than M-method for the three other parameters. 

Moreover, Core Hunter reported the lowest score for CV when attempting to maximize 

any other genetic parameter. This means that selection of a core set with a higher number 

of alleles did not result in a higher MR genetic distance or SH diversity index.  

For the SLS method where the MR genetic distance and the SH diversity index 

were optimized simultaneously, a trade-off between the two parameters was observed 

relative to their respective weight assigned to each measure proportional to the pseudo-

index α (Fig. 1). When optimizing both MR and SH (double) and four parameters 

(multiple) using Core Hunter program, we selected core subsets that simultaneously had 

better average MR distance and SH diversity index than core sets chosen by others 

approaches. For M-method, the selected core subsets showed higher MR and SH than the 

subset sampled by SLS method when optimizing only CV (Fig. 1). 

Construction of initial core subset 

Core sets selected by M-method had higher values of Shannon-Weaver 

phenotypic diversity index (Hc) than those sampled by other approaches, indicating that 

more traits’ classes were retained when using M-method (data not shown). Eighteen out 

of the twenty cores selected by the M-method showed no significant differences in 

frequency of trait classes compared to the entire collection. 

An initial core subset was proposed that included 64 entries sampled by the M-

method showing the highest Hc among the twenty sampled subsets (100% of allelic 
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diversity and 84.2% of phenotypic diversity), a further eight entries capturing the 

remaining phenotypic variation and an additional eight other cultivars considered as the 

most cultivated in the Mediterranean basin. The eighty olive entries (16% of the entire 

collection; Table 2) included in the final core collection correspond to the following 

countries: six from Algeria (14% of country’s accessions conserved in the WOGB 

collection), two from Croatia (12.5%), three from Cyprus (10.7%), five from Egypt 

(26.3%), one from France (8.3%), four from Greece (30.7%), 24 from Italy (14.3%), one 

from Lebanon (6.2%), five from Morocco (12.5%), two from Portugal (14.2%), 12 from 

Spain (12.3%), nine from Syria (12.6%) and six from Tunisia (25%). All the countries in 

the whole collection are represented in the selected core collection except Slovenia that 

has nine accessions in the WOGB Marrakech collection.  

Representativeness of overall genetic diversity  

The spatial distribution on the first two axes of the principal coordinate analysis 

(PcoA; Fig. 2) indicates that not only does the proposed core subset span the range of all 

the accessions of the whole collection but also shows an even distribution along the two 

main axes. This result indicates a lack of obvious genetic structure in the proposed core 

collection. 

CONCLUSION 

This work is a preliminary step towards optimized conservation and management 

of olive genetic resources, and subsequently for association mapping studies by assessing 

the linkage disequilibrium (LD) extent between loci and the relatedness within the formed 

core. As the first core subset proposed for cultivated olive species, the current 

unstructured core provides a working collection of cultivated olive germplasm that can be 

used to help to design association-mapping experiments to identify the genetic basis of 

the most economically important traits.  
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Tables 
 

Table 1. Genetic parameters of core subsets selected by different sampling methods at a 

sample size of 12.5%. MR: average Modified Rogers distance, SH: Shannon diversity 

index, HE: expected proportion of heterozygosity, CV: coverage of alleles (%), NA: 

number of alleles, GD: genetic diversity. 

Sampling methods MR SH HE CV 

Stockastic local search method (single)
1
 0.704 4.668 0.839 100 

Stockastic local search method (multiple)
2
 0.665 4.653 0.828 96.7 

Maximizing method
3
 0.651 4.57 0.809 100 

Simulated annealing method (NA)
3
 0.607 4.214 0.745 63.5 

Simulated annealing method (GD)
3
 0.608 4.211 0.752 62.1 

Logarithmic method
3
 0.632 4.474 0.799 79.4 

Proportional method
3
 0.631 4.48 0.799 79.5 

Random method
3
 0.609 4.239 0.753 64.7 

Whole collection 0.609 4.294 0.756 100 
1
Each selection parameter was attempted to be optimized independently by performing 20 

runs with 100% weight given to the respective parameter during each run. Results 

reported for each measure are independent of results reported for all other measures. 
2
Twenty independent runs were performed with equal weight given to each of the four 

parameters to maximize all genetic parameters simultaneously. 
3
Each genetic parameter is the mean value of 20 independent runs for each method 
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Table 2. Cultivar name, code, and origin of 80 entries included in the constructed core 

subset representing the 16% of the World Olive Germplasm Bank of Marrakech 

(WOGB). 

#  Cultivar name Country #  Cultivar name Country  

1 Aîmel (Alg002) Algeria 41 Azeitonera Azeitira (Por001) Portugal 

2 Chemlal (Alg003) Algeria 42 Acebuchera (Es001) Spain 

3 Ifiri (Alg026) Algeria 43 Alameno blanco (Es002) Spain 

4 Khadraïa (Alg038) Algeria 44 Arbequina (Es006) Spain 

5 Souidi (Alg041) Algeria 45 Blanqueta (Es009) Spain 

6 Zeletni (Alg030) Algeria 46 Corbelia (Es017) Spain 

7 Istarska crnica (Croi008) Croatia 47 Llometa (Es077) Spain 

8 Sitnica (Croi016) Croatia 48 Mollar de cieza (Es082) Spain 

9 Flasoy (Ch014) Cyprus 49 Sevillenca (Es091) Spain 

10 Lithrodontas (Ch025) Cyprus 50 varudo (Es063) Spain 

11 Menikon 1 (Ch027) Cyprus 51 Vera (Es064) Spain 

12 Aggizi Oshime (Egy003) Egypt 52 Bent Alkade (Syr061) Syria 

13 Baid Lhmam (Egy011) Egypt 53 Idleb 3 (Syr002) Syria 

14 Hamed (Egy019) Egypt 54 Janude 2 (Syr047) Syria 

15 Wateken (Egy004) Egypt 55 Khashabi (Syr041) Syria 

16 Lucques de l’Herault (Fr009) France 56 Killin (Syr015) Syria 

17 Amphisis (Gr001) Greece 57 Mesyaf 1 (Syr051) Syria 

18 Karolia (Gr005) Greece 58 Oum Kanane (Syr064) Syria 

19 Arancino (It028) Italy 59 Chetoui (Tun019) Tunisia 

20 Brandofino (It085) Italy 60 Doukar (Tun005) Tunisia 

21 Castricianella (It096) Italy 61 Gerboui Nord (Tun022) Tunisia 

22 Cavalieri (It098) Italy 62 Jemri bouchouka (Tun023) Tunisia 

23 Cucca (It032) Italy 63 Neb jmel (Tun008) Tunisia 

24 Frantoio (It041) Italy 64 Zalmati nord (Tun018) Tunisia 

25 Grossa di spagna (It021) Italy 65 Ascolana tenera (It076) Italy 

26 Lastrino (It023) Italy 66 Calatina (It086) Italy 

27 Leccio Marmmuono (It108) Italy 67 Cariasina (It090) Italy 

28 Mignolo Cerretanolo Carretano (It047) Italy 68 Gordale Sevillana (It106) Italy 

29 Moraiolo (It053) Italy 69 Morchiaio (It049) Italy 

30 Moresca (It117) Italy 70 Piangente (It059) Italy 

31 Ogliarola Bradano (It130) Italy 71 Manzanilla de Sevilla (Es037) Spain 

32 Ogliarola vulture (It129) Italy 72 Humaissi (Syr003) Syria 

33 Olivo di Mandanese (It131) Italy 73 Aggizi Sham (Egy001) Egypt 

34 Ottobratica (It001) Italy 74 Koroneiki (Gr010) Greece 

35 Sinopolese (It017) Italy 75 Mastoidis (Gr013) Greece 

36 Bissani (Li050) Lebanon 76 Leccino (It015) Italy 

37 Bouchouika (Mac024) Morocco 77 Picholine marocaine (Mac002) Morocco 

38 Meslala (Mac004) Morocco 78 Galega vulgar (Por006) Portugal 

39 VS3 (Mac037) Morocco 79 Picual (Es054) Spain 

40 ZDH 6 (Mac015) Morocco 80 Zaiti (Syr013) Syria 
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Figures 

 

 
 

Fig. 1. Plot of values of average MR distance and SH diversity index of all the core 

subsets of each of the different sampling methods and the entire collection. (a) Twenty 

independent core sets when optimizing both the average MR genetic distance and SH 

diversity index according to weight given to each parameter in the range of [0-1] 

(double), (b) when optimizing the four parameters (CV, MR, SH and HE) simultaneously 

(multiple), (c) when optimizing only CV (single). Values in brackets indicate the 

coverage of alleles. 

 

   
Fig. 2. Spatial distribution of the accessions selected as core subset and those of the entire 

collection using the main two principal coordinates (PCoA). The percentage of the 

variation explained by each axis is indicated. 


