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1 INTRODUCTION 

In recent years, a great deal of interest has been dedicated to 
develop digital control techniques to industrial AC drive 
systems and variable speed drives. Space vector pulse-width 
modulation (SVPWM) presents one of the most efficient 
methods for this purpose which relies on analysis of 
three-phase inverter in the complex plane by the Space 
Vector theory. Compared to the conventional sinusoidal 
pulse width modulation (SPWM), SVPWM is more suitable 
for digital implementation and can increase the obtainable 
maximum output voltage with maximum line voltage. 
Moreover, it can obtain a better voltage total harmonic 
distortion factor. The SVPWM main goal is to achieve 
symmetrical 3-phase sine voltage waveforms of adjustable 
voltage and frequency, while SVPWM takes the inverter 
and motor as a whole, using the eight fundamental voltage 
vectors, to realize variable frequency of voltage and speed 
adjustment[1]-[5]. 
In the recent years, paramagnet magnet (PM) machines have 
gained more popularity than induction motors in some fields 
of AC variable speed drives due to the availability of new 
PM materials that can introduce more energy and field. 
These machines lack any windings in the rotors and hence 
do not produce rotor resistive loss, leading to more 
efficiency than induction motor drives.  
PM machines are often classified in two groups: brushless 
DC (BLDC) and permanent magnet synchronous motor 
(PMSM). In BLDC machines, back-EMF is trapezoidal and 
hence they are prone to produce more harmonics and losses 
especially in high speeds in contrast to PMSM machines due 
to the sinusoidal back-EMF [6]. 
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First electrical machines are Axial Flux and their excitation 
system was magnetic (M. Faraday 1831). In recent years 
Axial flux machines because of two significant features are 
more considered: high moment of inertia and low speed. 
Both of these properties are due to impact structure and high 
diagonal size. High moment of inertia plays the flywheel 
role and so rotor speed remains stable. And low speeds are 
available because of high diagonal size and rotor can hold 
more pole-pairs, this feature is more interesting in tensional 
and lifting application. And mechanical gear box is needed 
no more and this reduces cost and increases efficiency of 
system [7], [8]. 

2 STATE ESTIMATION OF A SENSOR-LESS 
MOTOR 

Sensor-less strategies have been developed to overcome 
technical problems raised in the conventional drive systems. 
Back-EMF can be used to estimate rotor position and speed 
in high speeds. However, it is useless in low speeds and 
stand-still conditions because of the small induced voltage. 
Kalman filter (KF) can provide optimal estimations of rotor 
position and speed, based on a valid linear dynamic model 
of the motor, for both high and low speeds. Extended 
Kalman filter (EKF) presents an alternative estimation 
methodology once the motor can no longer be represented 
by a linear dynamic model. EKF needs to calculate a linear 
model of the system on the working operating point and this 
might be considered as a drawback for an observer or 
estimator because it is costly, complex and time consuming. 
UKF provides an alternative estimation tool for such highly 
non-linear applications which do not rely upon any 
linearization procedure. It uses a deterministic sampling 
approach to capture the state mean and covariance 
propagations with a minimal set of sampling points. 
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3 SENSOR-LESS AFPMSM DRIVE  

The stator windings of an axial flux PM motor are different 
from its radial flux PMSM counterpart. The main difference 
lies in stator parameters which necessitate calculating 
inductances that is very low in these machines comparing 
radial flux machines. But, this is not needed in the former 
because these parameters can be obtained by measurements. 
As a consequence, we can use conventional PMSM model 
for the axial flux PMSM. In addition, there is no difference 
between the back-EMF produced by a permanent magnet 
with that produced by an excited coil [8]. Hence, the 
mathematical model of an axial flux permanent magnet 
synchronous motor is similar to that of the radial PMSM.  

The following assumptions are made in the model 
derivation: 

a) Saturation is neglected although it can be taken into 
account by parameter changes. 

b) The back-EMF is sinusoidal.  

c) Eddy currents and hysteresis and stray losses are 
negligible.  

Accordingly, the stator d and q equations in the rotor 
reference frame are given by [6]: ݒௗ ൌ ܴ݅ௗ ൅ ௗߣ݌ െ ߱௦ߣ௤ (1) ݒ௤ ൌ ܴ݅௤ ൅ ௤ߣ݌ െ ߱௦ߣௗ (2) 

Where  ߣ௤ ൌ ௗߣ ௤݅௤ (3)ܮ ൌ ௗ݅ௗܮ ൅ ௗݒ ௔௙ (4)ߣ  and ݒ௤  are the d and q axis voltages, ݅ௗ  and ݅௤  denote the d and  

q axis stator currents, ܮௗ  and ܮ௤  indicate the d and q axis 

inductances, ߣௗ  andߣ�௤ are the d and q axis stator flux linkages, 

while R and ߱௦  represent the stator resistance and inverter 
frequency, respectively. ߣ௔௙  is the flux linkage due to the rotor 
magnets linking the stator. The electric torque can be expressed by: ௘ܶ ൌ ௔௙݅௤ߣൣܲ͵ ൅ ൫ܮௗ െ  ௤൯݅ௗ݅௤൧Ȁʹ (5)ܮ

And the equation for motor dynamic is: ௘ܶ ൌ ௟ܶ ൅ ௥߱ܤ ൅  ௥ (6)߱ܲܬ

P denotes the number of pole-pairs, ௟ܶ  indicates the load torque, B 
show the damping coefficient, ߱௥  is the rotor speed, and J is the 
moment of inertia.  

The inverter frequency is related to the rotor speed as follows: ߱௦ ൌ  (7) ݎ߱ܲ

The machine model is nonlinear as it contains product terms such 
as speed with ݅ௗ  and ݅௤ .  

For dynamic simulation, the equations of the PMSM, summarized 
in (1)-(6), must be expressed in the following state-space form: ܲ߱௥ ൌ ሺ ௘ܶ െ ௟ܶ െ ௗ݅ܲ (8) ܬ௥ሻȀ߱ܤ ൌ ൫ݒௗ െ ܴ݅ௗ ൅ ߱௦ܮ௤݅௤൯Ȁܮௗ (9) ܲ݅௤ ൌ ൫ݍ െ ܴ݅௤ െ ߱௦ܮௗ݅ௗ െ߱௦ߣ௔௙൯Ȁܮ௤ (10) 

The d and q variables are obtained from a, b, c variables through 
the Park transform, defined as: 

൥ݒௗݒ௤ݒ௢൩ ൌ ቎ܿݏ݋ሺߠሻ ߠሺݏ݋ܿ െ Ȁ͵ሻߨʹ ߠሺݏ݋ܿ ൅ ሻߠሺ݊݅ݏȀ͵ሻߨʹ ߠሺ݊݅ݏ െ Ȁ͵ሻߨʹ ߠሺ݊݅ݏ ൅ ʹȀ͵ሻͳȀߨʹ ͳȀʹ ͳȀʹ ቏ Ǥ ൥ݒ௔ݒ௕ݒ௖൩ (11) 

The a, b, c variables are obtained from the d, q variables through 
the inverse of the Park transform as follows: 

൥ݒ௔ݒ௕ݒ௖ ൩ ൌ ቎ ሻߠሺݏ݋ܿ ሻߠሺ݊݅ݏ ͳܿݏ݋ሺߠ െ Ȁ͵ሻߨʹ ߠሺ݊݅ݏ െ Ȁ͵ሻߨʹ ͳܿݏ݋ሺߠ ൅ Ȁ͵ሻߨʹ ߠሺ݊݅ݏ ൅ Ȁ͵ሻߨʹ ͳ቏ Ǥ ൥ݒௗݒ௤ݒ௢൩ (12) 

4 SVPWM INVERTER 

Space vector modulation (SVM) represents one of the 
preferred real-time modulation technique which is widely 
employed for digital control of voltage source inverters [9], 
[10]. This section presents a concise introduction to the 
principle and implementation of the space vector 
modulation for a two-level inverter. 

 

Fig. 1: Three phase, two level inverter 

The operating status of the switches in the two-level 
inverter, shown in Fig. 1, can be represented by switching 
states. The switching state �P� denotes that the upper switch 

in an inverter leg is on and the inverter terminal voltage 
( ஺ܸே ǡ ஻ܸே ǡ ஼ܸே) is positive (൅ ௗܸ௖) while �O� indicates that 

the inverter terminal voltage is zero due to the conduction of 
the lower switch. Therefore, there are eight possible 
combinations of switching states in the two-level inverter as 
listed in Table 1. The switching state [POO], for example, 
corresponds to the conduction of S1, S6, and S2 in the 
inverter legs A, B, and C, respectively. Among the eight 
switching states, [PPP] and [OOO] are zero states and the 
others are active states. 

Tab. 1: Space Vectors, Switching States, On State Switches, 
Vector Definitions 

Space 
Vector 

Switching 
States 

On State 
Switches 

Vector Definition ሬܸԦ଴ 
[PPP] 
[OOO] 

ଵܵǡ ܵଷǡ ܵହ ܵସǡ ܵ଺ǡ ܵଶ 
ሬܸԦ଴ ൌ Ͳ ሬܸԦଵ [POO] ଵܵǡ ܵ଺ǡ ܵଶ 

ሬܸԦଵ ൌ ξʹ൫ξʹ ௗܸ௖ ൅ξ͵ ఈܸ ൅ ఉܸ൯ȀͶ ௗܸ௖� ሬܸԦଶ [PPO] ଵܵǡ ܵଷǡ ܵଶ ሬܸԦଶ ൌ ൫ ௗܸ௖ ൅ ξ͸ ఈܸ൯Ȁʹ ௗܸ௖  ሬܸԦଷ [OPO] ܵସǡ ܵଷǡ ܵଶ 
ሬܸԦଷ ൌ ξʹ൫ξʹ ௗܸ௖ ൅ξ͵ ఈܸ െ ఉܸ൯ȀͶ ௗܸ௖� ሬܸԦସ [OPP] ܵସǡ ܵଷǡ ܵହ 
ሬܸԦସ ൌ ξʹ൫ξʹ ௗܸ௖ ൅ξ͵ ఈܸ ൅ ఉܸ൯ȀͶ ௗܸ௖� ሬܸԦହ [OOP] ܵସǡ ܵ଺ǡ ܵହ ሬܸԦହ ൌ ൫ ௗܸ௖ ൅ ξ͸ ఈܸ൯Ȁʹ ௗܸ௖  ሬܸԦ଺ [POP] ଵܵǡ ܵ଺ǡ ܵହ 
ሬܸԦ଺ ൌ ξʹ൫ξʹ ௗܸ௖ ൅ξ͵ ఈܸ െ ఉܸ൯ȀͶ ௗܸ௖� 

The active and zero switching states can be represented by 
active and zero space vectors, respectively. A typical space 
vector diagram for the two-level inverter has been illustrated 
in Fig. 2, where the six active vectors ሬܸԦଵ to ሬܸԦ଺ form a regular 
hexagon with six equal sectors (I to VI). The zero vector ሬܸԦ଴ 
lies on the center of the hexagon. 



4.1 Simulation of SVPWM 

Based on the principles of SVPWM, the simulation models 
for generating SVPWM waveforms mainly include the 
sector selection, gate switching time calculation, and 
generation of SVPWM waveforms. At the first, it is 
necessary to determine that the current voltage vector is 
within which sector. 

 

Fig. 2: Diagram of voltage space vector 

Considering that the expression of vector in the á-â 
coordinate system is suitable for control implementation, the 
angle can be determined in a fuzzy manner from á-â form of 
voltage vector. For this purpose, atan2 function is utilized by 
the virtue of considering speed reversal action. The atan2 
function provides angle in radians that must be converted to 
degree, the sector selection implemented in Tab. 2. 

Tab. 2: Sector selection rule 

Angle Sector 

From 0 to 60 1 
From 60 to 120 2 

From 120 to 180 3 
From -180 to -120 4 
From -120 to -60 5 

From -60 to 0 6 

In the next step, gate switching time is calculated. Gate on 
and off time is then calculated as follows: ைܶே ൌ ሺͳ െ ܸሻȀʹ (13) ைܶிி ൌ ሺͳ ൅ ܸሻȀʹ (14) 
V is the specified voltage vector from Table 1 according to 
the selected sector. 
For generating logic gate command, a ramp signal is 
generated and then compared with gate switching times of 
each phase. Gate commands of inverter�s switches are 
generated via Table 3. 

Tab. 3: Gate Command Signal Generation 

Phase A Phase B Phase C 

If ைܶிி ൑ ܴ ൑ ைܶே  
If ைܶிி ൑ ܴ ൑ ைܶே 

If ைܶிி ൑ ܴ ൑ ைܶே 
Switch 
1 ON 

Switch 
2 OFF 

Switch 
3 ON 

Switch 
4 OFF 

Switch 
5 ON 

Switch 
6 OFF 

Else Else Else 
Switch 
1 OFF 

Switch 
2 ON  

Switch 
3 OFF 

Switch 
4 ON  

Switch 
5 OFF 

Switch 
6 ON  

5 CURRENT CONTROLLER 

5.1 Internal Model Control 

In this paper, the internal model control (IMC) method [11] 
has been introduced and applied through current control 

scheme, as depicted in Fig. 3. The main benefits of the IMC 
methodology are the followings. It leads to synchronous 
frame PI-type current controllers. The controller parameters 
(i.e., gain and integration time) can be expressed directly in 
certain machine parameters and the desired closed-loop 
bandwidth. This simplifies the design procedure and hence 
trial-and-error steps are avoided. 

 
Fig. 3: IMC structure 

IMC is considered as a robust control method [7]. Its 
structure uses an internal model ܩ෠ሺݏሻ in parallel with the 
controlled system ሻݏሺܩ� . For an ac machine, output 
represents the stator voltage and current vectors, 

respectively, while ݎ ൌ ൣ݅ௗ௥௘௙ ݅௤௥௘௙൧் indicates the current 
set-point vector. The control loop is augmented by a 
blockܥ�ሺݏሻ; the so-called IMC controller. ܩሺݏሻ, ܩ෠ሺݏሻ and ܥሺݏሻ are all transfer function matrices. 

5.2 Controller design for the axial flux PMSM 

Since ܩሺݏሻ has no right-half-plane zeros and behaves as a 
first-order system for high frequencies, it can be written: ܩሺݏሻ ൌ  ሻ (15)ݏሺܮሻݏଵሺିܩ

Where all diagonal elements may be selected equal as: ܮሺݏሻ ൌ ሺܫߙሻȀሺݏ ൅  ሻ (16)ߙ

The tuning problem, which for a PI controller involves 
adjustment of two parameters, is hence reduced to the 
selection of one parameter only, the desired closed-loop 
bandwidth. Since, for a first-order system, the rise time  ݐ௥ is 
related to ߙ  as ௥ݐ ൌ �� ͻ Ȁߙ , a specification of the ݐ௥  
immediately yields the desired bandwidth and, in turn, a 
suitable controller. The equivalent classic controller can be 
found as: 

ሻݏሺܨ ൌ ߙ ێێێۏ
ௗܮۍ ൬ͳ ൅ ܴ௦ܮݏௗ൰ െ߱௥ܮ௤߱ݏ௥ܮ௤ݏ ௤ܮ ቆͳ ൅ ܴ௦ܮݏ௤ቇۑۑۑے

ې
 (17) 

ሻݏ௉ூሺܨ ൌ ێێێۏ
ௗܭۍ ൬ͳ ൅ ͳݏ ௜ܶௗ൰ ͲͲ ௤ܭ ቆͳ ൅ ͳݏ ௜ܶ௤ቇۑۑۑے

ې
 (18) 

It is, thus, more straightforward to implement the classic 
structure than the IMC structure, shown in Fig. 3. A 
comparison with two standard PI controllers (for the d and q 
loops) shows that (17) is an extension of PI control with 
integrators added in the anti-diagonal elements of ܨሺݏሻ in 
order to remove the cross coupling effects, with: ܭௗ ൌ ௗܮߙ �ǡ ௤ܭ ൌ ௤ܮߙ �ǡ ௜ܶௗ ൌ ௗܴ௦ܮ � ǡ ௜ܶ௤ ൌ  ௤ܴ௦ (19)ܮ

Figure 4 shows the schematic diagram of the current 
controller. Two PI controllers are employed to regulate the 
stator currents and feed-forward control is then used to 
decouple the dynamics between the applied voltages and the 
currents. The inputs of the current controller are the current 
reference and the rotor speed, while its output is the 
reference voltage. The reference voltage will be applied to 



SVPWM unit. The outputs of the PI controllers are limited 
and have anti-reset windup. Compensation methods can be 
used to improve the performance at low speeds. 

 
Fig. 4: Current controller block 

6 STATE ESTIMATION 

6.1 Motor nonlinear equations 

To avoid convergence problems at startup and to simplify 
the motor equations, the rotor reference frame is chosen for 
evaluation of the Kalman filters [12]. The motor nonlinear 
state equations can be expressed in the form: ݔሶሺݐሻ ൌ ሻݐሺݔሻ൯ݐሺݔ൫ܨ ൅ ሻݐሺݕ ሻݐሺݑܩ ൌ  ሻ (20)ݐሺݔܪ

Where ݑ ൌ ሾݑௗ ௤ሿƍݑ  and ݕ ൌ ሾ݅ௗ ݅௤ሿƍ  are the input and 
the output vectors, respectively. The state variables are: ݔ ൌ ሾ݅ௗ ݅௤ ߱௘  ௘ሿ (21)ߠ
The system state matrices are defined as: 

ሻ൯ݐሺݔ൫ܨ ൌ
ێێۏ
ێێێ
ۍ െ ௗܮܴ ߱௘ ௗܮ௤ܮ Ͳെ߱௘ ௤ܮௗܮ െ ௤ܮܴ െܭ௘ܮ௤

Ͳ
ͲͲ Ͳ ͲͲ Ͳ ͳ ͲͲۑۑے
ۑۑۑ
ې
 (22) 

ܩ ൌ ێێێۏ
ۍ ͳܮௗ Ͳ Ͳ ͲͲ ͳܮ௤ Ͳ Ͳۑۑۑے

்ې ǡ ܪ ൌ ቂͳ Ͳ Ͳ ͲͲ ͳ Ͳ Ͳቃ் (23) 

6.2 EKF algorithm 

The EKF is an optimal estimator in the least square sense for 
the estimation of nonlinear dynamic systems. It is derived 
from the Kalman filter based on successive linearization of 
the signal process and observation map [14]. More details 
can be found in a previous work [13]. For this application, 
the motor nonlinear state equations (20) are expressed in the 
discretized form: ݔ௞ାଵ ൌ ௞ݔ௞ሻݔௗሺܨ ൅ ௞ݓ௞൅ݑௗܩ ௞ݕ (24)  ൌ ௞ݔௗܪ ൅ ௞ݒ  (25) 
The state model, represented by (24) and (25), also includes 
the statistical description for the inaccuracies, where ݓ௞ ൌ ሺ݇ݓ ௦ܶሻ� and ݒ௞ ൌ ሺ݇ݒ ௦ܶሻ are, respectively, the zero 
mean Gaussian process and measurement noise vectors with 
covariance matrices Q and R. The discretized matrices are 
derived using the exponential Taylor approximation 
[15]-[16], assuming a small sampling time and the use of 
zero-order-hold (ZOH) sampling technique. ܨௗ ؆ ܫ� ൅ ܨ ௦ܶ , ܩௗ ൌ ܩ� ௦ܶ ,ܪ�ௗ ൌ  (26) ܪ
The basic idea of the EKF is to linearize the state-space 
model represented by (24) and (25) at each time instant 
around the most recent state estimate, which is taken at ݔ�ො௞ 
or ො௞ିଵݔ� . Once a linear model is obtained, the standard 

Kalman filter equations can be applied. The prediction of the 
state covariance requires the online computation of Jacobian 
matrix Ô, defined as: ߔ௞ିଵ ൌ ݔሻ߲ݐሺݔሻ൯ݐሺݔ൫ܨ߲� ቤ௫ୀ௫ො �ೖȁೖషభ ൌ ฬ௫ୀ௫ො�ೖȁೖషభݔሶ߲ݔ߲�  (27) 

The Jacobian of H is not calculated because H is linear. The 
discretized Jacobian of ߔ௞ିଵ will be approximated as:  ߔௗǡ௞ିଵ ؆ ܫ ൅ ௞ିଵߔ ௦ܶ (28) 
For a given sampling time ݐ௞, the optimal state estimation ݔො �௞ȁ௞  and its covariance matrix ෠ܲ �௞ȁ௞  are generated by the 
filter through a two-step loop. The first step performs a 
prediction of both quantities using the previous estimates ݔො �௞ȁ௞ and the mean voltage vector ݑۃ௞ିଵۄ actually applied to 
the system in the period ݐ௞ିଵ to ݐ௞. The second step corrects 
the predicted state estimate and covariance matrix by the 
measured actual motor phase currents. 

Step 1: Prediction (time update)  ݔො�௞ȁ௞ିଵ ൌ ොݔො�௞ିଵȁ௞ିଵ൯ݔௗ൫ܨ �௞ିଵȁ௞ିଵ ൅ ܲ (29) ۄ௞ିଵ࢛ۃௗܩ �௞ȁ௞ ൌ ௗ௞ିଵܲߔ �௞ିଵȁ௞ିଵߔ௞ିଵಿ ൅ ܳௗ (30) 
Step 2: Innovation (measurement update)  ݔො �௞ȁ௞ ൌ ොݔ �௞ȁ௞ିଵ ൅ ௞ݕ௞൫ܭ െ ܲ ො�௞ȁ௞ିଵ൯ (31)ݔܪ �௞ȁ௞ ൌ �ܲ௞ȁ௞ିଵ െ ܪ௞ܭ �ܲ௞ȁ௞ିଵ (32) 

The Kalman gain is calculated by: ܭ௞ ൌ ܲ �௞ȁ௞ିଵܪಿൣܲܪ �௞ȁ௞ିଵܪ ൅ ܴௗ൧ିଵ (33) 
The covariance update involves subtraction and thus can 
result in loss of symmetry and positive definiteness due to 
rounding errors. Joseph�s form covariance update [14] 
avoids this at the expense of some computational burden: ܲ �௞ȁ௞ ൌ ሾܫ െ ௞ିଵሿܲܪ௞ܭ �௞ȁ௞ିଵሾܫ െ ௞ିଵሿିଵ൅ܪ௞ܭ ௞ಿܭ௞ܴௗܭ  (34) 

6.3 UKF algorithm 

The UKF is a derivative free alternative to the EKF [14]. 
The basic mechanism for UKF is the same as the one 
described above by the equations (29) and (31). The 
difference is that the UKF performs the state estimation by 
approximating the probability distribution after performing 
the computation using the nonlinear function, rather than 
approximating the nonlinearity itself as in the EKF. To do 
this, the UKF utilizes the Unscented Transformation (UT). 
A set of deterministic sample points is taken around the last 
known state and propagated through the real nonlinear 
function. With these results, a mean and covariance can be 
approximated using a weighted sample mean and covariance 
of the transferred sample points. These weighted sample 
points are generated as follows. Consider the state variable x 
with dimension L having mean �Ƹ  and covariance ܲ� . We 
now choose a set of 2L +1 weighted samples ߯௜  (sigma 
points) deterministically so that they completely represent 
the true mean and covariance of state x. ɖ଴ ൌ ො  ɖ௜ݔ ൌ ොݔ ൅ ቀඥሺܮ ൅ ሻߣ ௫ܲቁ௜ � ǡ ݅ ൌ ͳǡ ǥ ǡ ɖ௜ (35) ܮ ൌ ොݔ െ ቀඥሺܮ ൅ ሻߣ ௫ܲቁ௜ � ǡ ݅ ൌ ݊ ൅ ͳǡǥ ǡ   ܮ

଴ܹሺ௠ሻ ൌ ߣ ሺܮ ൅ ሻൗߣ   

଴ܹሺ௖ሻ ൌ ଴ܹሺ௠ሻ ൅ ͳ െ ଶߙ ൅ ௜ܹሺ௠ሻ (36) ߚ ൌ ͳ ʹሺܮ ൅ ሻΤߣ   



Where ߣ ൌ ܮଶሺߙ ൅ ሻܭ െ ܮ  indicates a scaling parameter. 
The superscripts m, c, denote the weight point for mean or 
covariance calculation, respectively. The constant á 
determines the spread of the sigma points around x, and is 
set to a small positive value (e.g., ͳ ൑ ߙ ൑ ͳͲିସ ). The 
constant ê is a secondary scaling parameter which is usually 
set to (3−L), and â is used to include prior knowledge of the 
distribution of x (for Gaussian distribution â = 2 is optimal). ൫ඥሺܮ ൅ ሻߣ ௫ܲ൯௜is the i-th row or column of the matrix square 

root of ሺܮ ൅ ሻߣ ௫ܲ , and ௜ܹ is the weight associated with the 
i-th sigma point so that σ ௜ܹଶ௅௜ୀ଴ ൌ ͳ. Now each point is 
propagated through the nonlinear function to yield a set of 
transformed sigma points. ௜ܻ ൌ ݃ሺ ௜ܺሻ (37) 
The mean and covariance of y are approximated by the 
weighted average mean and covariance of the transformed 
sigma points. 

Tab. 4: UKF algorithm 

Initialize the state mean and covariance 
for k=1, ..., ∞ 
1. Calculate the sigma points using equations (35)(36) 
2. Predict (time update): ݔ�௞ȁ௞ିଵ ൌ �௞ȁ௞ିଵ�ǡݔൣࡲ ݑ �௞ȁ௞ିଵ൧ ݔො௞ି ൌ෍ ௜ܹሺ௠ሻ ௜ܺǡ�௞ȁ௞ିଵଶ௅௜ୀ଴  

௞ܲି ൌ෍ ௜ܹሺ௖ሻൣ ௜ܺǡ�௞ȁ௞ିଵ െ ො௞ିݔ ൧ൣ ௜ܺǡ�௞ȁ௞ିଵ െ ො௞ିݔ ൧் ൅ ܳଶ௅௜ୀ଴  

3. Correct (measurement update): �ܻ௞ȁ௞ିଵ ൌ �௞ȁ௞ିଵ൧ �ො୩ିݔൣࡴ ൌ෍ �୧ሺ୫ሻ�୧ǡ�୩ȁ୩ିଵଶ୐୧ୀ଴  

௬ܲೖ௬ೖ ൌ෍ ௜ܹሺ௖ሻൣ ௜ܻǡ�௞ȁ௞ିଵ െ ො௞ିݕ ൧ൣ ௜ܻǡ�௞ȁ௞ିଵ െ ො௞ିݕ ൧் ൅ ܴଶ௅௜ୀ଴  

௫ܲೖ௬ೖ ൌ෍ ௜ܹሺ௖ሻൣ ௜ܺǡ�௞ȁ௞ିଵ െ ො௞ିݔ ൧ൣ ௜ܻǡ�௞ȁ௞ିଵ െ ො௞ିݕ ൧்ଶ௅௜ୀ଴ ௞ܭ  ൌ ௫ܲೖ௬ೖ ௬ܲೖ௬ೖିଵ ො௞ݔ  ൌ ො௞ିݔ ൅ ො௞ݕ௞ሺܭ െ ො௞ିݕ ሻ ௞ܲି ൌ ௞ܲି െ ௞ܭ ௬ܲೖ௬ೖܭ௞்  

Table 4 shows the standard UKF algorithm for the additive 
(zero mean) case which is used for the simulations. ݕො ൌ෍ ௜ܹ ௜ܻଶ௅௜ୀ଴  (38) 

௬ܲ ൌ෍ ௜ܹሺ ௜ܻ െ ොሻሺݕ ௜ܻ െ ොሻ்ଶ௅௜ୀ଴ݕ  (39) 

7 SIMULATION RESULTS 

To verify the state estimation performance of the UKF and 
the EKF on a AF PMSM, a number of simulations were 
carried out for different operating conditions. The EKF and 
UKF algorithms were implemented in SIMULINK 
environment. The parameters of the motor model and 
simulation are as following: 
Stator winding self inductanceܮ௦ ൌ  Stator winding ,ܪ݉ʹ͵
resistance �ܴ௦ ൌ ͷߗ , Back EMF constant ௘ܭ� ൌͲǤʹͳͷ�ܸݏȀܴܽ݀ , Damping ܤ ൌ ͲǤͲͲͳ���Ȁ��� , Number of 
Pole-Pairs ܲ ൌ ʹ  , Rotor Inertia ܬ ൌ ͲǤ͸ ൈ ͳͲିଷ݃ܭǤ݉ଶ , 
Nominal speed ߱௡ ൌ ͳͻͲ�ܴܽ݀Ȁܵ݁ܿ  , Nominal Torque ௡ܶ ൌ ʹܰǤ݉  , Drive current limit ܫ௠௔௫ ൌ ͳ͸ܣ  , Drive 
voltage limit ௠ܸ௔௫ ൌ ʹͲͲܸ, ߙ ൌ ͳ�ǡ ߚ ൌ ʹ�ǡ ܭ ൌ Ͳ 

At first, starting and speed reversal performance of the 
sensor-less drive were compared. For this purpose, a 
SIMULINK model was developed as demonstrated in Fig. 
5. Motor starts with nominal speed 1800 rpm in no-load 
condition. At t=0.1s speed reversal command is applied. 
Fig. 6 illustrates that the motor drive tracks speed command 
well.    In this simulation, a noise with 0.5 A was added to the 
current measurements to test the robustness of the system 
against noise corruption. Fig. 7 shows the resulting speed 
and position estimation performances. A set of further 
simulations was carried out to evaluate loading and 
un-loading performances of the system. Drive system starts 
in no-load condition and then a nominal load is applied to 
motor after 0.1s. Afterwards, motor is un-loaded at t=0.2s 
and then speed is reversed at t=0.3s. A nominal step load 
applied to the motor at t=0.4s and at the end the motor is 
un-loaded.  The obtained results have been illustrated in Fig. 
8. And shows that the speed estimation performance of the 
filters subsequent to the introduced step load changes. The 
simulation results clearly indicate that both filters give good 
performances under loading and un-loading conditions. 
Nevertheless, the motor speed exhibits more oscillations but 
with the UKF during the transient period before settling to 
the steady state. However, it has smoother steady state 
characteristic compared with the EKF. For the considered 
drive system, the transient periods for the UKF and EKF are 
0.05 s and 0.03 s, respectively. Fig. 9 shows the comparison 
between speed and position estimation errors in UKF and 
EKF algorithms. 

 
Fig. 5: Sensor-less control block diagram 

7.1 Comparison 

To compare the state estimation of the EKF and UKF in 
more detail, the estimation errors are squared and 
accumulated during the simulation run. The results are 
shown in Fig. 10 for the no-load and full speed 
four-quadrant simulation cases shown in Figs. 7 and 9. It can 
be observed that the EKF performs slightly better than UKF 
during no-load startup. During the speed reversal, however, 
the UKF performs better, resulting in a much lower 
accumulated error count. Both estimators give good 
steady-state performance. After a transient period, the 
estimation error tends to zero, as observed in Fig. 7. The 
transient response of the EKF seems slightly better and the 
steady-state condition is reached in a shorter time. It can be 
observed that the speed estimate of the UKF is less noisy 
than that of the EKF as indicated by the thinner speed error 
trace. As observed in Fig. 10, speed reversal performance of 
UKF is slightly better than EKF but the steady-state 
performance of UKF is significantly better than EKF. The 
dynamic response of the EKF, however, is better in no-load 
condition as can be seen from Figs. 7 and 10. But, UKF 
performs better in full load condition. 



 
Fig. 6: EKF & UKF speed reversal performance 

 
Fig. 7: EKF & UKF speed reversal test scenario 

 
Fig. 8: EKF & UKF loading & un-loading performance 

 
Fig. 9: EKF & UKF loading & un-loading error 

   
Fig. 10: EKF & UKF loading & un-loading error 

8 CONCLUSION 

An IMC-based current controller has been implemented for 
a sensor-less AFPMSM drive system using the SVPWM 
technique. The EKF and UKF estimation algorithms have 
been comparatively developed and evaluated for such a 
control system in a MATLAB software package 
environment. Both estimators are found to be suitable 
candidates for sensor-less control of AFPMSM drives. The 
EKF performs slightly better during motor start-up, but the 
UKF performs better in tracking the speed. Nevertheless, for 
industrial applications where steady state performance is 
critical, there is no clear preference for either estimation 
filter. It is observed that the UKF seems more promising 
under noisy conditions with better filter characteristics than 
the EKF.  
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