
Enabling Fast Failure Recovery in OpenFlow
Networks

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet and Piet Demeester
Ghent University - IBBT, Department of Information Technology (INTEC),

Gaston Crommenlaan 8, bus 201, 9050 Ghent, Belgium
e-mail: {firstname.lastname}@intec.ugent.be

Abstract—OpenFlow is a novel technology designed at Stanford
University which aims at decoupling the controller software
from the forwarding hardware of a router or switch. The
OpenFlow concept is based on the approach that the forwarding
information base (FIB) of a switch can be programmed via a
controller which resides at a separate hardware. The goal is
to provide a standardized open management interface to the
forwarding hardware of a router or switch. The aim of a project
SPARC “SPlit ARchitecture Carrier grade networks” is to deploy
OpenFlow in carrier grade networks. Reliability is a major
issue to deploy OpenFlow in this networks. This work proposes
the addition of a fast restoration mechanism in OpenFlow and
evaluates the performance by comparing the switchover time and
packet loss to existing restoration options in a current OpenFlow
implementation.

Keywords: OpenFlow, Restoration, Protection, Carrier
Grade Networks

I. INTRODUCTION

The aim of the OpenFlow architecture [?] is to provide
a standardized open management interface to the forwarding
hardware of a router or switch, particularly to test an exper-
imental protocol in the network we use every day. This is
based on the fact that most modern routers/switches contain
FIB (Forwarding Information Base) and FIB is implemented
using TCAMs (Ternary Content Addressable Memory). The
OpenFlow provides a protocol to program this FIB via
“adding/deleting” entries in a FlowTable. The FlowTable is
an abstraction of a FIB. In OpenFlow networks, all the logic
is performed on a centralized system, called the OpenFlow
controller which manages the OpenFlow switches using the
OpenFlow protocol (Fig. 1). Thus an OpenFlow switch con-
sists of a FlowTable; which performs packet lookup and
forwarding, and a secure channel to an external controller.

A Flow Entry in the FlowTable consists of (1) a “packet
header” that defines the flow, (2) “action” which defines
how the packet should be processed, and (3) “statistics”
which keep track of the number of packets; bytes for each
flow; and the time since the last packet matched per flow.
The controller installs these Flow Entries in FlowTables
of OpenFlow switches. Incoming packets processed by the
OpenFlow switches are compared against the FlowTable. If
a matching Flow Entry is found, actions for that entry are
performed on the packet. If no match found, the packet is
forwarded to the controller over the secure channel. The

Fig. 1. OpenFlow Architecture

controller is responsible to determine how the packet should
be handled; either by adding no Flow Entries or by adding
valid Flow Entries in the OpenFlow switches.

The secure channel between the OpenFlow switch and
controller is a transport layer security (TLS) channel. Thus,
packets between OpenFlow switches and controller contain
OpenFlow header above transport layer header.

There are two different OpenFlow enabled software
switches which can be installed in our testbeds. One is
Stanford’s software reference design, and the other is Open
vSwitch (http://openvswitch.org/) implementation. We use
Open vSwitch for our emulation as it is a production quality,
multi-layer virtual switch which is designed to enable massive
network automation.

Many attempts are already been carried out to make an
OpenFlow controller. These are NOX [?], Beacon [?], Onix
[?], Helios [?] and Maestro [?]. This work uses the NOX as
an OpenFlow controller. This is because it is Open-Source,
widely used and provides a simplified platform for writing
network control software in C++ or Python.

SPARC (SPlit ARchitecture Carrier grade networks) [?]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55688217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is a project, aimed at the investigation and implementation
of a new split in the architecture of the future internet
and its building blocks. Unique for the SPARC project is
the implementation of scalable carrier class functionalities
based on the OpenFlow concepts. So the aim of the SPARC
is to deploy OpenFlow in carrier grade networks. The
term “carrier grade” [?] describes a set of functionalities
and requirements that architecture should support in order
to fulfill the operational part of network operators. The
requirements are (1) Scalability (2) Reliability (3) Quality of
Service (QoS) and (4) Service Management. Carrier grade
networks should be able to detect and recover from incidents
without impacting users. Hence a requirement is added in the
carrier grade network so that it should recover from failure
within 50 ms sub interval [?]. Keeping this requirement in
mind, this work is carried out to enable fast recovery in
OpenFlow networks.

Resilience mechanisms [?] to be used in carrier grade
networks to handle recovery can be divided into Restoration
and Protection. In case of protection, the paths are preplanned
and reserved before a failure occurs. Hence when a failure
occurs, no additional signaling is needed to establish the
protection path. However, in case of restoration, the recovery
paths can be either preplanned or dynamically allocated, but
resources are not reserved until failure occurs. Thus, when
a failure occurs additional signaling is needed to establish
the restoration path. Protection is a proactive strategy while
restoration is a reactive strategy.

In this paper, we compare restoration options available
in OpenFlow networks. Furthermore, this work proposes
the addition of a fast restoration mechanism for OpenFlow
networks and evaluates its performance by comparing the
switchover times and packet loss to the existing restoration
options in a current OpenFlow implementation.

The rest of paper is organized as follows: Section II
presents current mechanisms available in OpenFlow networks
for handling recovery. It also discusses limitations of existing
mechanisms in handling failures. Section III describes our
fast restoration option that can be enabled in OpenFlow
networks. Section IV gives the emulation environment. Section
V presents analysis of results and finally section VI concludes.

II. CURRENT MECHANISMS IN HANDLING FAILURES IN
OPENFLOW NETWORKS

This section discusses existing mechanisms implemented
at OpenFlow and NOX software to recover from a link
failure. It also discusses limitations of these mechanisms in
enabling fast recovery in OpenFlow networks. The OpenFlow
protocol [?] defines the control messages which are exchanged
between OpenFlow switches and controller. Two messages are
important for this work (1) “packet in” and (2) “packet out”
message. When the packet is received by the datapath and
needs to send this to the controller, it is sent via “packet in”

messages. On the other hand, when controller needs to send
the packet out through datapath of OpenFlow switch, it sends
“packet out” message.

A. OpenFlow Mechanisms for handling failures

OpenFlow follows an on-demand approach. Flow Entries
are not added proactively in switches. When a data packet
arrives at an OpenFlow switch and it does not match any
Flow Entry, it requests the Flow Entry from the controller
via sending “packet in” message. However, if the Flow Entry
is present then OpenFlow switches directly forward the data
packet according to the Flow Entry, without contacting the
controller.

The failure can be recovered if new correct Flow Entry is
added in OpenFlow switches after the failure occurs. We can
say that recovery from the failure depends on the time when
the OpenFlow switch again requests the Flow Entry from the
controller. Thus, recovery from failure depends on the life of
flow-entries in FlowTable.

The life of Flow Entries is associated with two intervals
called “idle timeout” and “hard timeout” [?]. Idle timeout
indicates the time when the Flow Entries should be removed
due to lack of activity. It is the time interval of a Flow
Entry with which the OpenFlow switch has not received
the packet of a particular flow of that entry. Hard timeout
indicates the maximum life of Flow Entries, regardless of
activity. OpenFlow switches remove their Flow Entries from
the FlowTables after the expiration of one or both the intervals.

The more the value of these intervals, the more time the
OpenFlow switches will take to recover from failure. The
lesser the value, more packets will be sent to controller to
refresh the Flow Entries.

B. NOX mechanisms for detection of failures

The recovery from failures is possible with a new Flow
Entry only if the controller also knows about the failure.
Otherwise, the controller may add an incorrect entry in the
OpenFlow switches. Thus, recovery depends not only on hard
and idle timeout but it also depends on mechanisms running
in the network to detect the failure. This section describes the
mechanisms available to NOX for the detection of link failure.

NOX implements L2-Learning and routing mechanisms
to recover from a failure. L2-Learning is implemented in
C++ and Python. The former is called L2-Learning Switch
and the latter is called L2-Learning Pyswitch. These behave
differently to recover from a failure.

1) L2-Learning Switch: L2 Learning switch operates by
maintaining a mapping between the MAC (Media Access
Control) addresses and the physical ports of OpenFlow
switches by which they can be reached. These mappings
are learned by monitoring the source addresses of incoming



packets. It updates or adds the source MAC address and
incoming port in its MAC table once it receives the packet.

Besides this, it matches the destination address (DA) of
the packet with the addresses available in the MAC table.
If the address matches then it adds the Flow Entry in the
FlowTable of the OpenFlow switch so that the packet can be
forwarded via the port, defined in the mapping of the MAC
table. Otherwise, if the DA is a broadcast, multi-cast, or
unknown uni-cast, it sends an OpenFlow packet to OpenFlow
switch to flood the packet out of all ports in the spanning
tree, except the incoming port.

An L2-Learning switch does not currently implement the
aging timer logic. In aging timer logic [?], when a switch
learns a source address, it timestamps the entry. Every time
the switch sees a frame from that source, it updates the
timestamp. Now if it does not hear from that source before
an aging timer expires, it removes the entry from its MAC
table.

In the absence of the aging timer logic, an L2-Learning
switch does not have a way to remove the entry from its
MAC table in the presence of a link failure. However, it has
a way to update the entries, if the packet is received from
some other port. This may be possible if L2-Learning starts
flooding. Packets are flooded in two cases (1) when the MAC
table does not contain the entry related to DA (2) if DA is a
broadcast or multicast address. Due to absence of the aging
timer logic, case (1) never occurs once the MAC table entry
is filled with an entry, but case (2) can occur.

When data packets are transmitted in the network, ARP
(Address Resolution Protocol) also runs in parallel if static
permanent ARP entries are not added at the source to store
the MAC address of destination nodes. The destination
address of a packet with an ARP request for unknown MAC
address is a broadcast address. Thus, ARP request may
become the reason of establishing new path in L2-Learning.
ARP requests with broadcast address are sent in network
when the ”node reachable time” of the ARP entry expires.
Thus establishment of new path in L2-Learning may depend
on the time when the ARP request with broadcast address is
resent in the network. This time is a random value between
[ 12 × baseReachableT ime, 3

2 × baseReachableT ime] [?].
Thus until the end nodes send ARP requests in network,
wrong Flow Entries may be added in the OpenFlow switches
after a failure occurs. Thus, recovery may be delayed by
client initiated ARP requests.

End hosts do not send ARP requests with broadcast address
when a permanent entry is already present in ARP table to
stop the ARP traffic between client and server. Hence, in
the absence of packets with the destination MAC address as
broadcast or multicast address, L2-Learning switch may not
recover from failure.

2) L2-Learning PySwitch: PySwitch implements above L2-
Learning switch mechanism. Beside this, it also implements
aging timer logic.

The value of the aging timer may also delay the
establishment of the restoration path. The NOX release with
Pyswitch implementation does not suffer this delay as it
keeps this value equal to the idle timeout of Flow Entries.
Logically, the value of idle timeout should be less than hard
timeout. Once a Flow Entry is added, the next packet is not
forwarded to NOX controller in a time less than idle timeout.
Thus, as the aging timer is equal to idle timeout, it will
always expire before the next packet reaches this Pyswitch.
Thus the packet reaching to controller after adding Flow
Entry may always be flooded in the network. Thus, recovery
in this case depends totally on idle and hard timeout value.

3) Routing Mode: Routing mode [?] installs the Flow
Entries by constructing the shortest path between end hosts.
It uses four mechanisms to construct the shortest path
between end hosts. The mechanisms are discovery, topology,
authentication and routing.

Discovery mechanism uses the “packet in” and “packet
out” messages (defined by OpenFlow Protocol) to run the
discovery protocol among OpenFlow switches. Discovery
mechanism transmits “packet out” to transmit LLDP (Link
Layer Discovery Protocol) packets among OpenFlow
switches. When the OpenFlow switch receives these “packet
out” message, LLDP packets are sent to the respective output
port. When the corresponding OpenFlow switch receives
LLDP packet, it sends the “packet in” message to the NOX
to say about the detected link.

The topology mechanism provides in-memory records of
all the links currently up in the network. On the other hand,
the authenticator mechanism keeps an in-memory record of
all the authenticated hosts and users in the network.

Finally, the routing mechanism keeps track of all the
shortest-path routes between authenticated hosts in the
network. A packet is forwarded to the NOX when there is no
Flow Entry in OpenFlow switch to forward it to destination.
If the authenticator mechanism does not yet know about the
source, the source is authenticated first. If the destination is
known, the routing mechanism adds the shortest path Flow
Entries in the OpenFlow switches. Otherwise, if a destination
is unknown then it is located by flooding the packet out
of every datapath port except the incoming port. Once the
destination is known then the shortest path is built from the
topology database.

Link addition and failure detection in the routing mode
of NOX depends on discovery sent and timeout interval,
respectively. Discovery sent interval is the time after which



it sends LLDP “packet out” message to connected OpenFlow
Switch. Discovery timeout interval is the time within which if
it does not receive the LLDP “packet in” message, it declares
the link as lost.

C. Loop free Technology at OpenFlow Environment

Recovery mechanisms require a redundant path in
OpenFlow Switch topology. Controller mechanisms may
require flooding of data packets when destination is unknown.
Furthermore, ARP requests with broadcast address are always
flooded in network. So, recovery requires spanning tree
protocol (STP) [?] or any other loop free technology at
OpenFlow switch to run recovery experiment in OpenFlow
Networks. (STP is a Data Link Layer protocol and is
standardized as IEEE 802.1D)

OpenFlow reference software [?], implemented by Stanford
provides a way to enable IEEE 802.1D in its networks.
To enable IEEE 802.11, switch should first support IEEE
802.1D protocol. Now to use IEEE 802.1D of a switch,
OpenFlow software should be enabled with -stp option.
Those switches that do support it are expected process all
802.1D packets locally before performing flow loopup. A
switch that implements STP much set the OFPC STP bit
in the ‘capability’ field of its OFPT FEATURE REPLY
message. OFPT FEATURES REPLY [?] is a one of the
message exchanged between OpenFlow Switch and controller.

It is left to the discretion of a switch to handle STP action
appropriately. However, Open vSwitch does not provide –stp
option to enable STP. The switches that do not support IEEE
802.1D spanning tree depend on the controller to enable a
basic spanning tree at the switch level. Current NOX releases
do not implement any loop free technology in their releases.
A basic spanning tree mechanism is built by Glen Gibb [?]
for NOX which attempts to build a spanning tree within an
OpenFlow network. However, this mechanism is made for
NOX release version 0.5. The structure of higher releases are
different from version 0.5 in the terms of xml and meta files.
Thus this basic spanning tree requires some modification to
integrate in higher NOX releases.

In the absence of STP or any other loop free technology,
flooded packets travel in a loop. First, flooded packets persist
indefinitely in the network cycle causing congestion. Secondly,
mechanism for finding destination path by flooding may not
function correctly because a switch may receive packets from
a source via multiple ports.

III. FAST RESTORATION FOR OPENFLOW NETWORKS

Fast Restoration in an OpenFlow network requires an
immediate action of the controller on a link change event.
This section first gives an overview and then explains the
algorithmic approach for fast restoration.

A. Overview

Fast recovery is possible if the incorrect Flow Entries are
flushed from all the OpenFlow switches and new entries are
installed immediately after detecting the link failure in the
existing path. This is possible with the help of controller only
if (1) the controller knows about the failure (2) the controller
remembers the older path which was established by adding
Flow Entries in OpenFlow switches (3) the controller is able
to calculate a new path (4) the controller knows all the current
flows in the network.

B. Algorithmic Approach

We explain fast restoration in OpenFlow networks using
pseudo code written below. Pseudo code shows the action
performed by controller on receiving link change event. The
link change event can occur if either of OpenFlow Switch
or controller run link “addition/failure” algorithm in its level
and raise link change event at controller.

PSEUDO CODE FOR FAST RESTORATION

1. Given: Link Change Event on Controller
2. for each calculated path (P) via Controller
3. if(Path P affected by link change )
4. Calculate the new available path (P1)
5. if(Flow Entries added in OpenFlow (OF)

switches w.r.t P)
6. Delete the Flow Entries from each OF

whose entry is incorrect due to affected
path P

7. Establish path P1 in OF Switches by
adding Flow Entries in each OpenFlow
switch

In fast restoration, the controller performs a set of actions
to restore the path between affected hosts. First action is to
check that whether its calculated older paths among end hosts
are affected or not (line 2 and 3 of pseudo code). If these are
affected then it calculates the new path for those end hosts
(line 4). Besides this, it also checks that if it has added Flow
Entries in OpenFlow switches regarding the older faulty path
(line 5). If so then it deletes the Flow Entries from all the
OpenFlow switches regarding the older path (line 6). Then, it
adds Flow Entries in all the OpenFlow switches for the new
path (line 7).

IV. EMULATION ENVIRONMENT

We assume in our testing that the link “failure/addition”
detection mechanism is present at data plane level. We
manually make ethernet interface down and up for the “link
change event” in our network. Port parameters changes
by doing this. OpenFlow switches detects this change
and reports the change to controller. Our emulated nodes
take average of 108 ms time to detects this change. Thus
this change is known to OpenFlow switches after this interval.



We call our emulated restoration as predetermined
restoration. This is because in our emulation, the administrator
provides all the paths to the end hosts with the priority to each
path. The paths are provided to controller at the beginning of
experiment. The controller chooses the available path which
has highest priority.

Fig. 2. OpenFlow Network Environment

Immediate recovery requires a redundant path in topology.
We create the emulation setup shown in Fig. 2 to test the
behavior of OpenFlow Networks in the presence of redundant
path in the topology.

A. Testing of Emulation Environment

We use Ubuntu version 9.04 for the installation of Open
vSwitch version 1.1.0 and NOX version 0.9.0 (zaku).
We send 11000 ping packets from Client 0 to Server 1
in the interval of 10 ms. We calculate the number of
ping replies received by Client 0. Hard and idle timeout for
Flow Entries is set as 20 seconds and 10 seconds, respectively.

Only 97, 9 and no replies are received using Pyswitch,
Routing and L2-learning switch, respectively. The existing
mechanisms behave very badly in this emulation environment
as they suffer loop problems in the presence of redundant
path. We emulate OpenFlow in ethernet switches which need
tree topology for those packets which are flooded in network.
In the absence of tree topology, packets travel in loop.
Thus, switches receive packets from a source via multiple
looping ports. This is the reason that L2-Learning and routing
mechanism do not function properly without the presence of
any loop free technology. As predetermined restoration does
not allow OpenFlow switches to flood any packets, all the
11000 ping replies are received by Predetermined restoration.
Predetermined restoration does not search destination by
flooding and also it does not flood ARP packets. When ARP
request comes, it sends an OpenFlow packet to forward
the packet from a particular output port as defined in the
predetermined paths. Thus ARP requests in predetermined

restoration also do not suffer looping problem in the absence
of any loop free technologies.

Fig. 3. Round Trip Time in Loop Topology

Fig. 3 shows the round trip time of ping replies received
by Client 0. It shows that the round trip time of a ping packet
is more than 15 seconds in Routing mode and Pyswitch.
However, in case of predetermined restoration, ping reply
takes less than 10 ms to arrive.

Fig. 4. Bandwidth usage (Bytes per seconds) in loop topology

Fig. 4 shows the bandwidth usage of the NOX line
(Linkc1 in Fig. 2) when 64 byte ping packet is transmitted in
networks. Bandwidth usage includes all the packets including
periodic echo request and echo replies between the NOX and
Open vSwitches. Fig. 4 shows that even though 64 bytes are
transmitted in the interval of 10 ms, the bandwidth usage of
NOX is more than 10 Mbps for all the existing mechanisms.



This is because packets travel in loop in the absence of any
loop free technology. It also shows that bandwidth usage of
NOX line via predetermined restoration is comparable to the
sent packet size at rate of 10 ms.

Our aim in this paper is not to remove the loop problem
by predetermined mechanism. Loop problem can be removed
by using any loop free mechanism, for example by building
spanning tree in topology. Our aim is to show failure recov-
ery time in the OpenFlow network when outgoing path is
affected by link failure. Our proposed fast restoration requires
a mechanism for calculating paths. So, we use predetermined
mechanism to calculate the path.

B. Emulation Scenario

In order to compare the performance of existing
mechanisms with our proposed fast restoration mechanism
(via Predetermined Restoration), we believe that existing
mechanism should also behave normally without loop
problem. So, we break the links (Link 1, Link 2 and Link 5)
in topology, shown in Fig. 2, such that data packet should
not travel in loop. Loops with data packets are created when
Open vSwitches flood the packets. Packets are flooded when
controller does not know the destination. Thus we create a
topology such that when the NOX replies the Open vSwitches
to flood the packet then loop should not be present in our
topology. Secondly, loops are also created when ARP requests

Fig. 5. Time Analysis for Link Events happening in Experiment

with broadcast address are sent. Thus to this, we manually
add static ARP entry at Client and Server node to know their
MAC addresses. However, as L2-Learning Switch can only

be recovered from failure if ARP requests with broadcast
address are sent. We enable ARP in case of L2-Learning and
will see that how it recovers from failure in the presence of
ARP. Base reachable Time [?] which is responsible for ARP
entry to declare as stale is 60 seconds. Results via disabling
ARP for L2-Learning are also shown.

Value of hard timeout and idle timeout for all the
mechanisms is kept as 120 and 10 seconds, respectively. We
also keep the value of hard timeout equal to infinite to show
the difference of recovery time in our results.

Fig. 5 gives time analysis of the events happening in our
emulation networks (Fig. 2). We break the link 5 at the
beginning of experiment. We break the link 1 and link 2 after
a time interval shown in Fig. 5. Link 1 and link 2 are up and
present at the beginning of experiment. We break link 2 after
the span of 1 second. Thus now there is only one path left to
reach the Server. The path is < AFE >. After 30 seconds
of time span, we start ping from client 0 at the interval of 10
ms. Ping packets travel path < AFE > to reach the server
as only one path is available now to reach server.

We give two link events in our experiment, the time when
we make link 2 up and link 1 down is the 1st event and the
time when link 1 is made up and link 2 down is the 2nd
event. Events in our emulation scenario last 5 seconds, where
we make change in outgoing path by doing link up and down
of two different paths < AFE > and < ACDE >. Two
looping path < AFE > and < ACDE > are available in
this 5 seconds interval but this does not give rise to looping
of data packets. This is because Flow Entries are already
established in OpenFlow switches when the events are given
in our emulation.

We vary the time of first “link addition/failure” (1st Event
in Fig. 5) to show the variation in our results. This time gives
the time left to flush the Flow Entries from Open vSwitches.
The path changes to < ACDE > after 1st event. We wait for
240 seconds to give the second “link addition/failure” (2nd

Event in Fig. 5) in our experiment. Thus, after 2nd event,
ping path again changes to < AFE >.

V. ANALYSIS OF RESULTS

This section deals with the calculation of “flow switchover
time”, number of packet drops and round trip time. “Flow
Switchover Time” is the time spent by flow to switch to
another available path.

A. Mathematical Analysis of the Flow Switchover Time

This section gives the mathematical formula for the
calculation of “flow switchover time” for routing and L2-
learning mechanism.



Fig. 6. Flow Switchover Time (Mathematical Formula)

Let the value of the hard timeout is equal to T and the first
Flow Entry is added at time t0. Suppose the traffic is going
from (Client) 0 to (Server) 1 through the path < 0AFE1 >
(Fig. 2) and link between F and E gets broken at time t1.

Recovery from this failure depends on the time t when
controller detects the link failure and also the time when Open-
Flow switches A and E will delete the older incorrect Flow
Entries from their FlowTable. Present existing mechanisms
depend on idle and hard timeout to flush the entries from
OpenFlow Switches. In our emulation scenario, packets are
sent in 10 ms interval and idle timeout is 10 seconds. Thus
idle timeout in A will never expire. So, it will flush its older
incorrect Flow Entries after its hard timeout expire. But E will
flush entries after idle timeout is expired. As value of hard
timeout is more than idle timeout, switching to new path in
this scenario depends on hard timeout. Thus, “flow switchover
time” can be given by Eq. ??.

RT = T − t1 + b
t− t0
T
c × T (1)

The graphical notation of Eq. ?? is given in Fig. 6. It
shows the “flow switchover time” of existing mechanisms
when Y = b t−t0

T c = 0 and when Y = b t−t0
T c = 1.

Fig. 6 and 7 show integer value and 2E in X-axis. Integer
value let say x in X-axis shows the time of first event when it
is given after the x seconds of ping initiated. 2E after let say
x in X-axis shows the time of second event when first event
is given after x seconds of time when ping initiated.

Fig. 7. Flow Switchover Time (Emulation)

B. Emulation Results

Fig. 7 gives the “flow switchover time” of our fast
restoration and existing mechanisms via emulation. It shows
that “flow switchover time” of Routing and Pyswitch is
almost similar to the result obtained via mathematical graph
by virtue of Y=0 (Fig. 6). It also shows that “L2-learning
switch with ARP enable” works similar to line with Y=0
from X axis value 5 to 65. But after that it behaves as the
line with Y=1. This is because ARP is not sent in that hard
timeout interval. So, now L2-Learning switch has already
added incorrect Flow Entries in OpenFlow Switches. Thus
now it has to wait for second timeout to expire these entries.

Fig. 7 also shows that in the absence of ARP, L2-Learning
Switch never switch to other path in the presence of failure.

Fig. 7 shows that our proposed fast restoration always
switches to other path within an interval of 12 ms (“flow
switchover time” - “link change detection time”), no matters
how much time is left to expire the hard timeout. This is
because fast restoration does not depend on expiration of hard
timeout to flush the Flow Entries from OpenFlow switches.
It immediately flushes the Flow Entries once the controller
detects the failure and establishes a new path.

Our predetermined restoration results show the possible
fast recovery when the controller has to take part in the
switchover decision. Fig. 7 gives the “flow switchover time”
when hard timeout is 120 seconds. However, we also calculate
the “flow switchover time” when hard timeout is infinite. The
existing mechanisms do not change path when hard timeout
is infinite. However, predetermined restoration switches to
other path within 12 ms when hard timeout is infinite.



The “flow switchover time” in our emulation results show
that our proposed restoration recovers more fast than all the
existing mechanisms. This is because it takes immediate action
on link failure. We believe that our restoration mechanism
enables fast recovery in true sense when all the decision is
taken by controller which is installed in different hardware.

Fig. 8. Total Number of Ping Drop via Link Change Event

Fig. 8 gives the total number of ping drops via the “link
change events” given in our experiment. The reason of these
drops is explained in Fig. 7 where flow has taken some time
to switch to other path. In case of existing mechanisms, more
than 1000 packets get dropped. However, less than 20 packets
are dropped in our fast restoration mechanism.

Fig. 9. Round Trip Time in ms

Fig. 9 gives the round trip time of ping packets when time
waited for first event (Fig. 5) is 85 seconds. It shows the spikes

in round trip time. When the packets are sent to the controller
for deciding the path then ping packets take more time in
getting reply. OpenFlow network delays some of the packet
as it is dependent on controller which is situated far away
from OpenFlow Switches to take the action. Furthermore, it
also depends on how much controller is loaded at the time
when it receives the request from OpenFlow switches.

VI. CONCLUSION AND FUTURE WORK

OpenFlow architecture allows us to implement restoration
options in OpenFlow networks which are much faster than
MAC reconvergence (Routing and L2-Learning PySwitch) or
the client-initiated recovery using a new ARP request (L2-
Learning Switch). Our fast restoration mechanism can be
integrated in any mechanism where controller is able to detect
the failure by some means. In our fast restoration mechanism,
flow is able to switch to another path within 12 ms interval
regardless of the time left to expire timeouts of the Flow
Entries. We tested this restoration for a single ping flow.
Therefore, restoration can also be tested for muliple flow in
networks. Furthermore, as Automated Protection Switching
(APS) is more faster than restoration, Openflow can also be
tested with this mechanism, where we may remove the need
to contact the controller after a failure.

ACKNOWLEDGMENT

This work was partially funded by the European Com-
mission under the 7th Framework ICT research Programme
projects SPARC and OFELIA.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Peterson, J. Rexford,
S. Shenker, J. Turner, “OpenFlow: Enabling innovation in campus net-
works”, SIGCOMM, Rev. 38(2), 69-74, 2008.

[2] N. Gude, T. Koponen, J. Pettit, B. Paffa, M. Casado, N. McKeown and S.
Shenker, “NOX: Towards and Operating System for networks”, In ACM
SIGCOMM, CCR, 2008.

[3] Beacon: A java-based openflow control platform. See
http://www.openflowhub.org/display/Beacon/Beacon+Home, Nov 2010.

[4] Teemu, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R.
Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks”, In
OSDI, Oct 2010.

[5] HIDEyuki Shimonishi, Shuji Ishii, Yasunobu Chiba, Toshio Koide, “He-
lios: Fully distributed OpenFlow controller platform”, GEC, 2010.

[6] Z. Cai, A. L. Cox, T. S. Eugene, “Maestro: A system for scalable
OpenFlow control”, Rice University Technical Report TR10-08, 2010.

[7] SPARC: http://www.fp7-sparc.eu/
[8] MEF: http://metroethernetforum.org/index.php
[9] B. Niven-Jenkins, D.Brungard, M. Betts, N. Spreche, “MPLS-TP Re-

quirements draft-ietf-mpls-tp-requirement-10”, 2009
[10] Jean Philippe Vasseur, Mario Picavet, Piet Demeester, “Network Recov-

ery: protection and restoration of optical, SONET-SDH, IP and MPLS”,
Morgan Kaufmann, 2004.

[11] OpenFlow Specification 1.0: http://www.openflow.org/documents/openflow-
spec-v1.0.0.pdf

[12] STP via OpenFlow Specification: http://www.openflow.org/wk/index.php/
OpenFlow 0.8.9 release notes

[13] K. Kompella, and Y. Rekhter, “RFC 4761: Virtual Private LAN service
(VPLS) Using BGP for Auto-Discovery and Signalling”, 2007

[14] ARP Manual: http://linux.die.net/man/7/arp
[15] NOX Documentaion: http://noxrepo.org/manual/app-index.html
[16] ISO DIS 10038 MAC Bridges.
[17] NOX Basic Spanning Tree Implementation:

http://www.openflow.org/wk/index.php/Basic Spanning Tree


