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Abstract. In this paper the problem of scattering off a fusion plasma is approached from the point
of view of integral equations. Using the volume equivalence principle an integral equation is derived
which describes the electromagnetic fields in a plasma. The equation is discretized with MoM using
conforming basis functions. This reduces the problem to solving a dense matrix equation. This can
be done iteratively. Each iteration can be sped up using FFTs.
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INTRODUCTION

The simulation of radio frequency heating of a fusion plasma is a challenging computa-
tional task. Fortunately, the problem can be split up in different interacting subcompo-
nents because different time scales can be identified in the plasma. One of those compo-
nents for numerical simulation of the electromagnetic waves is the wave equation solver.
A hot plasma can be described as a non-local anisotropic inhomogeneous medium. As
a first step in the effort of tackling the problem the cold plasma approximation is used.
The cold plasma approximation may seem a very rough approximation but it allows for
a broad variety of wave phenomena in a hot plasma to be accurately modelled.In addi-
tion this approximation removes the non-local behaviour. In this paper 2D scattering off
a plasma within a stationary magnetic field is studied. The excitation used throughout
the paper is a TE polarized plane wave. In principle any fixed incoming field can be
used. Intermediary results will be shown and suggestions for further research will be
discussed.

METHOD OF MOMENTS SOLUTION

Integral equation and discretization

The plasma region is discretized with a uniform rectangular mesh. In each square the
medium parameters are allowed to vary continuously. With every edge of the mesh an
edge basis function will be associated to discretize the integral problem.
The wave problem in the cold plasma approximation can be solved solely using
Maxwell’s equations in sinus regime. Using the volume equivalence principle it is
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possible to derive a volume contrast integral equation (VCIE). Maxwell’s equations can
be rewritten for vacuum with an additional contrast source accounting for the plasma
response. The next step is to write down the Helmholtz equation and to use the theory
of Green’s functions to obtain the VCIE. When the mixed potential expression for the
Green dyadic is employed, the following equation is obtained:

et(ρ) =ein
t (ρ)+ k2

0

∫
S

G(ρ|ρ ′)∆ ¯̄εtt(ρ ′) ·et(ρ ′)dS′

+∇t

∫
S

G(ρ|ρ ′)∇′t ·(∆ ¯̄εtt(ρ ′) ·et(ρ ′))dS′
(1)

Where ∆ ¯̄ε = ¯̄ε− ¯̄I. The cold plasma dielectric tensor ¯̄ε is given by:

¯̄εtt =
(

εt −εc
εc εt

)
(2)

There are multiple ways of discretizing this integral equation. The possibility to choose
∆ ¯̄εtt ·et as the unknown field and to expand it in a divergence conforming basis is
very tempting. Using divergence conforming RWG (Rao-Wilton-Glisson) basis func-
tions would allow the divergence operator to be well defined. It was discovered though
that this choice of basis doesn’t allow for accurate results. The problem was identified
to be caused by the basis functions not permitting the boundary conditions on the edge
of the plasma-vacuum interface to be fulfilled. For non-continuous ε profiles it can be
shown that the boundary condition for the electric induction cannot be satisfied.
In this paper a different approach was opted for: the electric field is discretized using
curl conforming RWG basis functions. However by doing so a new problem is intro-
duced. After multiplication with the contrast tensor ∆ ¯̄εtt the divergence operator in the
integral equation is ill-defined. To overcome this problem a completeness relation using
a Gramian matrix is introduced (non-orthogonal base). After discretisation a set of linear
equations remains.

N−1

∑
n=0

an [Gdc]mn +
N−1

∑
n,p,q=0

an < dm|G |dp >
[
G−1

cd

]
pq < cq|∆ ¯̄ε|cn >

=< dm|ein
t >

(3)

Hereby |cn > is identified as a curl conforming and |dm > as a divergence conforming
basis function. After discretization this system can be written in a compact form as
Z ·X = B.
Classicaly this system would be inverted using for example LU decomposition. The
complexity of this process is O(N3) with N being the number of unknowns used to
discretize the system. Often there can be chosen for an iterative approach. Using Krylov
Subspace methods allows for fast convergence of the iterative procedure. The conver-
gence speed depends on the condition number of the system matrix and the clustering of
the eigenvalues. If this is not optimal often a preconditioner can be added to the system
to change the spread of the eigenvalues.
For large problems it is no longer possible to store the system matrix. Due to the



translation symmetry of the background medium the integral operator G has a convo-
lution structure. This implies that the matrix is Toeplitz. This means only the different
interactions need to be stored, which has the consequence that memory complexity
becomes: O(N). The system matrix is factorized into a Toeplitz matrix, the inverse of
a Gramian and a matrix containing the dielectric contrast. It is not possible to store
the inverse Gramian because this would destroy the favorable memory complexity.
Therefore the inversion needs to be done iteratively in each loop. A careful choice of the
basis and test set will assure the Gramian matrix to be well conditioned. In practice this
means this sub-invertion in less than 5 iterations. For that reason the overall complexity
of O(N logN) is not altered.

Accuracy

The conforming basis set can be shown to fulfill the Babuska-Brezzi conditions
[1] for accurate numerical respresentation of the wave solution. This implies that the
upper boundary on the numerical error equals the interpolation error and can be made
infinitesimally small by mesh refinement.
In simulating a reference system and comparing it with an analytical solution we see
rapid convergence to the analytical result. The measurement points are located on a
circle being in the far field of the cylindrical scatterer.

Figure 1. Comparison of the numerically obtained scattered far field for a gyrotropic cylinder with the
analytic solution. The x-axis shows the poloidal angle, the y-axis the modulus of the field in V/m

Computational speed

The speed of the solver is determined by the product of the time for a matrix-vector
product and the number of iterations. In this graph we will investigate if the predicted
complexity of the matrix-vector product is obtained. It is experimentally confirmed that
the theoretical O(N logN) time complexity is achieved.
Next the speed of convergence is investigated as a function of the plasma dielectric pa-
rameters. It is observed that the number of iterations rises too fast to have a satisfying
overall complexity. If the problem is well-conditioned the relation should be sublinear.



Figure 2. Left: Time complexity of matrix-vector product in function of number of unknowns N (log-
log plot), Right: The number of iterations in function of the medium parameters for a fixed size cylinder.
On the X-axis is

√
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t + ε2
c (log-plot)

Volume integral equations tend to have a lot of resonances which may cause this be-
haviour.

FUTURE RESEARCH

At this moment simulations are going on to include the reactor vessel and low density
regions. Other research will focus on developing a preconditioner to ameliorate the
convergence of the iterative solver. To get rid of resonances it would be interesting to
work with the combined volume integral equation, as this might solve the problem of
the resonances which could be responsible for the ill-posedness of the problem. The
comparison with finite element methods is going to be made to assure that this VCIE
method shows competetive with FEM codes.
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