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Abstract. Restricted Boltzmann Machines (RBM’s) are unsupervised
probabilistic neural networks that can be stacked to form Deep Be-
lief Networks. Given the recent popularity of RBM’s and the increas-
ing availability of parallel computing architectures, it becomes inter-
esting to investigate learning algorithms for RBM’s that benefit from
parallel computations. In this paper, we look at two extensions of the
parallel tempering algorithm, which is a Markov Chain Monte Carlo
method to approximate the likelihood gradient. The first extension is
directed at a more effective exchange of information among the parallel
sampling chains. The second extension estimates gradients by averaging
over chains from different temperatures. We investigate the efficiency of
the proposed methods and demonstrate their usefulness on the MNIST
dataset. Especially the weighted averaging seems to benefit Maximum
Likelihood learning.
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1 Introduction

Since the recent popularity of deep neural architectures for learning [2], Re-
stricted Boltzmann Machines (RBM’s; [6, 5]), which are the building blocks of
Deep Belief Networks [7], have been studied extensively. An RBM is an undi-
rected graphical model with a bipartite connection structure. It consists of a layer
of visible units and a layer of hidden units and can be trained in an unsupervised
way to model the distribution of a dataset. After training, the activations of the
hidden units can be used as features for applications such as classification or
clustering. Unfortunately, the likelihood gradient of RBM’s is intractable and
needs to be approximated.

Most approximations for RBM training are based on sampling methods.
RBM’s have an independence structure that makes it efficient to apply Gibbs
sampling. However, the efficiency of Gibbs sampling depends on the rate at which
independent samples are generated. This property is known as the mixing rate.
While Gibbs samplers will eventually generate samples from the true underlying
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distribution they approximate, they can get stuck in local modes. This is espe-
cially problematic for distributions that contain many modes that are separated
by regions where the probability density is very low.

In this paper, we investigate two methods for improving both the mixing rate
of the sampler and the quality of the gradient estimates at each sampling step.
These two methods are extensions for the so-called Replica Exchange method
and were recently proposed for statistical physics simulations [1]. The first ex-
tension allows every possible pair of replicas to swap positions to increase the
number of sampling chains that can be used in parallel. The second extension
is to use a weighted average of the replicas that are simulated in parallel. The
weights are chosen in a way that is consistent with the exchange mechanism.

2 Restricted Boltzmann Machines

An RBM defines an energy function that depends on the joint configuration of
a set of visible variables v and a set of hidden variables h. In an RBM where all
variables are binary, this energy function is given by

E(v,h) = −
Nh∑
i=1

Nv∑
j=1

Wijhivj −
Nh∑
i=1

hiai −
Nv∑
j=1

vjbj , (1)

where Nh and Nv are, respectively, the number of hidden and the number of
visible units. The symbols W , a and b denote trainable weight and bias parame-
ters. This function can be used to define a Gibbs probability distribution of the
form p(v) =

∑
h e

−E(v,h)/Z, where Z is the partition function which is given by
Z =

∑
h,v e

−E(v,h).
The gradient of this likelihood function is given by

∂ln p(v)

∂θ
= −

∑
h

p(h|v)
∂E(v,h)

∂θ
+

∑
v,h

p(v,h)
∂E(v,h)

∂θ
, (2)

where θ is an element in the set of parameters {W,a,b}. The first term of this
gradient can be evaluated analytically in RBM’s but the second term needs to
be approximated. This second term is the gradient of the partition function and
will be referred to as the model expectation.

3 Training RBM’s

The most commonly used training method for RBM’s is the Contrastive Di-
vergence (CD; [6]) algorithm. During training, a Gibbs sampler is initialized at
a sample from the data and run for a couple of iterations. The last sample of
the chain is used to replace the intractable model expectation. This strategy
assumes that many of the low energy configurations, that contribute most to the
model expectation, can be found near the data. However, it is very likely that
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there are many other valleys of low energy. Furthermore, the algorithm does not
necessarily optimize the likelihood function at all.

In Persistent Contrastive Divergence learning [13], (PCD) a Markov chain
is updated after every parameter update during training and used to provide
samples that approximate the model expectation. The difference with normal
CD is that the chain is not reset at a data point after every update, but keeps on
running so it can find low energy regions that are far away from the data. Given
infinite training time, this algorithm optimizes the true likelihood. However, as
training progresses and the model parameters get larger, the energy landscape
becomes more rough. This will decrease the size of the steps the chain takes and
increase the chance that the chain gets stuck in local modes of the distribution.

To obtain better mixing rates for the sampling chains in PCD, the Fast PCD
algorithm was proposed [12]. This algorithm uses a copy of the model that is
trained using a higher learning rate to obtain samples. The training itself is in
this case pushing chains out of local modes. Unfortunately, the training algorithm
is now not necessarily converging to the true likelihood anymore.

Another way to improve the mixing rate is Replica Exchange Monte Carlo
[11], also referred to as Parallel Tempering (PT). Recently, PT has been ap-
plied to RBM training as well [4]. This algorithm runs various chains in parallel
that sample from replicas of the system of interest that operate under different
temperatures. Chains that operate at lower temperatures can escape from local
modes by jumping to locations of similar energy that have been proposed by
chains that operate at higher temperatures. A serial version of this idea has also
been proposed for training RBM’s [9].

One downside of PT for training RBM’s is that the number of parallel sam-
pling chains that can be used by this algorithm is limited. One can use many
chains in PT to cover more temperatures. This will cause more swaps between
neighbouring chains to be accepted because they are closer together. However,
it will also take more sequential updates before a certain replica moves back and
forth between the lowest and the highest temperatures. Another disadvantage of
PT is that only the chain with the lowest temperature is actually used to gather
statistics for the learning algorithm.

4 Multi-Tempering

To increase the number of parallel chains that PT can effectively use, we propose
Multiple Replica Exchange methods for RBM training. These methods have
already been shown to work well in statistical physics [3, 1]. To prevent the use
of very different names for similar algorithms, we will refer to this method as
Multi-Tempering (MT). Since MT is a modification of PT Markov Chain Monte
Carlo, it is necessary to describe the original algorithm in some more detail.

The idea behind PT is to run several Markov chains in parallel and treat
this set of chains as one big chain that generates samples from a distribution
with augmented variables. Transition steps in this combined chain can now also
include possible exchanges among the sub chains. Let X = {x1, · · · ,xM} be
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the state of a Markov chain that consists of the states of M sub chains that
operate under inverse temperatures {β1, · · · , βM}, where β1 = 1 and indicative
of the model we want to compute expectations for. The combined energy of this
system is given by E(X) =

∑M
i=1 βiE(xi). The difference in total energy that

results from switching two arbitrary sub chains with indices i, j, is given by

E(X̂(i, j))− E(X) = (βi − βj)(E(xj)− E(xi)) , (3)

where X̂(·) denotes the new state of the combined chain that results from the
exchange indicated by its arguments1. If i and j are selected uniformly and
forced to be neighbours, the Metropolis-Hastings acceptance probability is given
by rij = exp(E(X) − E(X̂(i, j))). This is the acceptance criterion that is used
in standard Parallel Tempering.

In Multi-Tempering [1], index i is selected uniformly and index j is selected
with a probability that is based on the difference in total energy the proposed
exchange would cause:

p(j|i) =
rij∑M

j′=1 rij′
. (4)

The acceptance probability is now given by

A(i, j) = min

{∑
j′ e

−E(X̂(i,j′))∑
k e

−E(X̂(i,j,k))

}
. (5)

5 Using a weighted average of the chains

Given the selection probabilities p(j|i) from Equation 4 and the acceptance prob-
abilities A(i, j|X), one can compute a weighted average to estimate the gradient
of the intractable likelihood term. This average is given by

〈g〉1 =

M∑
j=1

[(1−A (i, j)) g(x1) +A(i, j)g(xj)] p(j|i) , (6)

where g(·) is short for ∂E(·)
∂θ . This extension is originally called Information Re-

trieval but this term might lead to confusion in a Machine Learning context.
We will refer to this version of the algorithm as Multi-Tempering with weighed
averaging (MTw).

6 Experiments

All experiments were done on the MNIST dataset. This dataset is a collection of
70, 000 28× 28 grayscale images of handwritten digits that has been split into a

1 So X̂(i, j, k) would mean that i is first swapped with j and subsequently, the sample
at position j is swapped with the one at position k.
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train set of 50000 images and test and validation sets of each 10000 images. The
pixel intensities were scaled between 0 and 1 and interpreted as probabilities
from which binary values were sampled whenever a datapoint was required.

First, is was investigated how the MT and the PT algorithms behave with
different numbers of parallel chains by looking at the rate at which replicas travel
from the highest temperature chain to the one with the lowest temperature. Ten
RBM’s with 500 hidden units were trained with PCD using a linearly decay-
ing learning rate with a starting value .002 for 500 epochs. Subsequently, both
sampling methods were run for 10000 iterations and the number of times that
a replica was passed all the way from the highest to the lowest temperature
chain was counted. This experiment was done for different numbers of parallel
chains. The inverse temperatures were uniformly spaced between .8 and 1. In
preliminary experiments, we found that almost no returns from the highest to
the lowest temperature occurred for any algorithm for much larger intervals.

The second experiment was done to get some insight in the mixing rates
of the sampling methods and their success at approximating the gradient of the
partition function. A small RBM with 15 hidden units was trained on the MNIST
dataset using the PCD algorithm. The different sampling methods were now run
for 20000 iterations while their estimates of the gradient were compared with
the true gradient which had been computed analytically . Because the success of
the samplers partially depends on their random initialization, we repeated this
experiment 10 times.

Finally, to see how the different sampling algorithms perform at actual train-
ing, a method called annealed importance sampling (AIS) [8, 10] was used to
estimate the likelihood of the data under the trained models. PCD, PT, MT
and MTw were each used to train 10 RBM models on the train data for 500
epochs. Each method used 100 chains in parallel. The inverse temperatures for
the Tempering methods were linearly spaced between .85 and 1 as we expected a
slightly more conservative temperature range would be needed to make PT com-
petitive. We used no weight decay and the order of magnitude of the starting
learning rates was determined using a validation set. The learning rate decreased
linearly after every epoch.

7 Results and Discussion

Fig. 1 displays the results of the first experiment. The number of returns is a lot
higher for MT at the start and seems to go down at a slightly slower rate than
for PT. This allows a larger number of chains to be used before the number of
returns becomes negligible.

As Fig. 2 shows, the MT estimator was most successful at approximating
the gradient of the partition function of the RBM with 15 hidden units. To
our surprise, the MT estimator also performed better than the MTw estimator.
However, it seems that the algorithms that used a single chain to compute the
expectations (MT and PT), fluctuate more than the ones that use averages
(MTw and PCD).
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Fig. 1: Number of returns for parallel tempering and multiple replica exchange
as a function of the number of parallel chains that are used.

Fig. 2: Mean Square Error (MSE) between the approximated and the true gra-
dients of the partition function of an RBM with 15 units as a function of the
number of samples.

Table 1: Means and standard deviations of the AIS estimates of the likelihood
of the MNIST test set for different training methods. Means are based on 10
experiments with different random initializations.
Epochs MTw MT PT PCD

250 −82.25(10.33) −92.59(7.79) −93.48(11.54) −94.43(1.71)
500 −65.09(7.66) −83.74(6.76) −84.18(7.79) −80.45(11.36)
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Table 1 displays the AIS estimates of the likelihood for the MNIST test set
for each of the training methods. MTw outperforms all other methods on this
task. The standard deviations of the results are quite high and MT, PT and
PCD don’t seem to differ much in performance. The fact that MT and PT use
only a single chain to estimate the gradient seems to be detrimental. This is
not in line with the results for the gradient estimates for the 15 unit RBM. It
could be that larger RBM’s benefit more from the higher stability of gradient
estimates that are based on averages than small RBM’s. The results suggest that
PCD with averaged parallel chains is preferable to Tempering algorithms that
use only a single chain as estimate due to its relative simplicity but that MTw
is an interesting alternative.

(a) Matrix of exchange frequen-
cies cut off at 100.

(b) Binarized matrix of ex-
changes.

Fig. 3: Plot of inter chain replica exchanges for MT.

During MT training, we also recorded the transition indices for further in-
spection. There are clearly many exchanges that are quite large as can be seen in
Fig. 3a, which shows a matrix in which each entry {i, j} represents the number
of times that a swap occurred between chains i and j. While there seems to be
a bottleneck that is difficult to cross, it is clear that some particles still make it
to the other side once in a while. In Fig. 3b, one can see that occasionally some
very large jumps occur that span almost the entire temperature range.

8 Conclusion

We proposed two methods to improve Parallel Tempering training for RBM’s and
showed that the combination of the two methods leads to improved performance
on learning a generative model of the MNIST dataset. We also showed that the
MTw algorithm allows more chains to be used in parallel and directly improves
the gradient estimates for a small RBM. While the weighted average didn’t seem
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to improve the mixing rate, it seemed to stabilize training. For future work, it
would be interesting to see how the sampling algorithms compare when the
RBM’s are used for pre-training a Deep Belief Network.
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