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Abstract—In this paper, we study a power control game over
a collision channel. Each player has an energy state. When
choosing a higher transmission power, the chance of a successful
transmission (in the presence of other interference) increases at
the cost of a larger decrease in the energy state of the battery.
We study this dynamic game when restricting to simple non-
dynamic strategies that consist of choosing a given power level
that is maintained during the lifetime of the battery. We identify
a surprising paradox in our Hawk-Dove game which we term
the initial energy paradox.

I. INTRODUCTION

This paper investigates a semi-dynamic variant of the well
known Hawk and Dove game [3]. The latter game has been
introduced to describe the evolution of aggressive behavior
among animals competing for food. Variants of the Hawk
and Dove (HD) game have found various applications in
networking. The medium access game considers competition
over the access to a common channel through the control of
the attempt probabilities [4]. The power control game studies
the choice of transmission power over a collision channel
[6]. Finally, in congestion control the HD game can be used
to study the choice between versions of TCP (transmission
control protocols) to be used over the Internet [7].

In the HD game, there are two types of individuals: aggres-
sive (Hawk, denoted by H) and peaceful (Dove, denoted by
D). In the MAC problem, the aggressive behavior corresponds
to a high attempt rate. In power control a Hawk coincides with
transmission at a high power, and in the congestion control it
is the choice of an aggressive version of TCP (e.g. scalable
TCP or high-speed TCP).

In this paper, we revisit the power control problem. We
use the classical framework of evolutionary games, which we
extend to a semi-dynamic context (see below). This framework
deals with large populations in which individuals interact with
each other through many local interactions, each interaction
involving two randomly selected individuals. This pairwise
interaction paradigm is relevant for sparse mobile networks
in which one may neglect the possibility of simultaneous
interference of more than two mobiles.

The standard HD game predicts when one type of behavior
(H or D) would dominate in the long run, and when we may
expect the coexistence of aggressive and peaceful individuals.
The equilibrium fraction of each type of behavior is obtained
by solving a 2 player auxiliary matrix game.

Several authors have studied dynamic variants of this game
where individuals are characterized by their energy state [6],
[7], [9]–[11]. A biological variant of this game can be found
in [13]. Aggressive behavior requires more energy (which is
the case in both the MAC problem as well as in the original
HD example). The energy reserve of an individual is defined
as the individual state. Thus actions of an individual influence
not only the immediate fitness but also the future state of
the individual. Individuals aim to maximize the total expected
fitness during their lifetime. In these dynamic versions of the
HD game, the individual strategy is no more a single choice
between H and D, but rather a collection of choices that
prescribes how an individual should behave at each possible
state.

We consider in this paper a semi-dynamic framework which
inherits features from the static and dynamic frameworks. As
in the dynamic setting, each player has an individual energy
state and the player’s action determines not only the immediate
fitness but also the future state distribution. Yet in contrast
to the dynamic versions of the game, we assume that an
individual makes state independent choices. The individual
chooses i (where i is H or D) and once the choice is made,
the same action i is always used by this individual at any state.
The individual is either always aggressive or always peaceful.
The problem thus resembles the static framework in the fact
that the individual has to choose only once, between D and
H.

We shall use the two central concepts of evolutionary games.
The first is the concept of an Evolutionary Stable Strategy
(ESS), which is a distribution of (deterministic or mixed)
actions such that, if used, the population is immune against
penetration of mutations. This notion is stronger than that of
Nash equilibrium as ESS is robust against a deviation of a
whole fraction of the population whereas the Nash equilibrium
is defined with respect to possible deviations of a single player.

II. MODEL

Consider a sparse network that consists of a large population
of mobile stations (MS). Apart from mobile stations, there
are also many fix receivers: throw boxes, relays or base
stations which are referred to as base stations (BS) in the
remainder. We focus on the case where MSs only transmit
when they are in the transmission range of a BS. That is,
the situation in which mobiles themselves forward packets
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of other mobiles is explicitly excluded. As multiple MSs
may transmit simultaneously to a BS, interference cannot be
avoided. However, assuming that the network is sparse, we
do not consider interference between multiple mobiles. That
is, if interference occurs, at most two mobile terminals are
involved, and the probability of interference between multiple
mobile stations is neglected.

This brings us to the pairwise interaction paradigm of
evolutionary games. It is assumed that interactions between
individuals occur by some random selection process in which
pairs of individuals are selected independently. We consider
two types of terminals: one type transmits at high power while
the other type transmits at low power. We refer to these by
hawks (H) and doves (D), respectively, thereby referring to
the HD game. A mobile user (player) decides which terminal
to use, and once this choice is made, he sticks to that choice
of terminal for some predetermined time T . Considering only
pairwise interaction, it is assumed that the sequence of types
of terminals with which a given terminal interacts constitutes
a sequence of i.i.d. random variables.

We consider two distinct models.
• Model 1 (M1): T is some fixed large time, for example

two years, which is approximately the expected time until
one changes his/her cellular phone. We assume that T
does not depend on the type of the phone (H or D).

• Model 2 (M2): T is the time until the mobile runs out
of battery power. Note that in this case, T is a function
of the choice of type of battery. Indeed, as H consumes
more energy than D, it will drain faster.

Models 1 and 2 above have interesting mathematical properties
that guarantee the existence of an ESS as described at the end
of Section IV and which in turn facilitate its computation.

The interference model is characterized by the probabilities
for successful transmissions whereas the energy model at hand
is characterized by the transition probabilities for the energy
levels. We make the following assumptions.

Success probability: Consider a packet transmission of a
terminal and let δ denote the probability that no other terminal
interferes with its transmission. If this is not the case, there
is interference between two terminals and the probability that
the packet is transmitted successfully is determined by the
types of the terminals involved. Let ps(i, j) denote the success
probability of the first terminal assuming that this terminal
plays i while the other plays j (i, j ∈ {H,D}). We have,

ps(i, j) =


0 for (i, j) = (D,H),
p1 for (i, j) = (D,D),
1 for (i, j) = (H,D),
p2 for (i, j) = (H,H).

(1)

Transition probabilities: If the energy level of an in-
dividual is n and its action is D, then the energy level
decreases to n−1 with probability q1 or it remains unchanged
with probability q2. We assume q1 + q2 ≤ 1. We do allow
q1 + q2 < 1, in which case we assume that there is a positive

probability of 1 − q1 − q2 for a breakdown which does not
depend on the energy level. A breakdown is represented as a
transition to an energy level zero.

Analogously, if the energy level of an individual is n and
its action is H , then the energy level decreases to n− 1 with
probability q3 or it remains unchanged with probability q4. Of
course we have q1 < q3. As for D, we again allow that q3 +
q4 < 1 in which case we shall have a breakdown probability
1−q3−q4, a breakdown corresponding to a transition to energy
level 0.

Initial energy level: In the remainder, we assume that a
mobile starts at energy level ND or NH , depending on the
type of mobile. The energy level represents the number of
transmissions the mobile can do. As transmission by a hawk
requires more energy, a dove will be able to transmit more
times with the same battery: ND > NH . Finally, when the
battery is empty, it is immediately replaced.

III. PROPERTIES OF THE FITNESS

Both hawks and doves aim to optimize the amount of data
that can be send during the lifetime of the battery, hence the
fitness is defined as follows

Definition 1. The long term fitness of a mobile is defined as
the sum of the expected number of packets sent by that mobile
during the lifetime of its battery. We denote by V (j, i) the long
term fitness of a mobile, given that it is of type j, and that all
others are of type i, with i, j ∈ {H,D}.

Definition 2. Assume that at any time, a fraction α of the
mobiles use action D, and the rest use H . We then denote
by V (j, α) the corresponding long term fitness given that the
mobile uses j. Moreover, let

V (β, α) = βV (D,α) + (1− β)V (H,α)

be the fitness of a terminal that chooses mobile type D (and
always uses it) with probability β, and otherwise chooses type
D (with probability 1− β).

IV. EVOLUTIONARY STABLE STRATEGIES

A. Nash equilibrium

As usual, a symmetric strategy α is a Nash equilibrium if
no player can do strictly better by a unilateral deviation to
some other pure or mixed action β.

• For i = H or i = D, i is a pure Nash equilibrium if
V (i, i) ≥ V (j, i) for j = H,D.

• Assuming model M1, we have that α is a mixed Nash
equilibrium if V (α, α) ≥ V (β, α) for all β.

• Assuming model M2, we have that α is a mixed Nash
equilibrium if V (α, g(α)) ≥ V (β, g(α)) for all β, where
g is defined as,

g(α) =
αTD

αTD + (1− α)TH
, (2)

with Ti the time that a battery of a type i mobile empties. An
equilibrium is said to be strict if any deviation by any player
results in a strictly worse fitness for that player.
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B. Definition of a standard evolutionary game

Suppose that the whole population uses a strategy q and that
a small fraction ε (called ”mutations”) adopts another strategy
p. Evolutionary forces are expected to select against p if

V (q, εp+ (1− ε)q) > V (p, εp+ (1− ε)q) (3)

Definition 3. A strategy q is said to be an Evolutionary Stable
Strategy (ESS) if for every p 6= q there exists some εy > 0 such
that (3) holds for all ε ∈ (0, εy).

We shall make use of the following characterization of an
ESS [12]:

Theorem 1. A strategy q is an Evolutionary Stable Strategy
if and only if ∀p 6= q the following conditions holds:

V (q, q) ≥ V (p, q), (4)

and if

V (q, q) = V (p, q) then V (q, p) > V (p, p). (5)

The first condition says that the ESS is a Nash equilibrium
in the game that describes the interaction between two players.
Conversely, if q is a strict Nash equilibrium in that game then
it is an ESS in the evolutionary game.

The second condition, referred to as ”Maynard Smith’s
second condition”, states that if q is a Nash equilibrium but
not a strict Nash equilibrium (i.e. the fitness of a deviation
p from q does as good as q when the rest of the population
uses q), then q can still be an ESS if it has an advantage in
that it can invade the mutants strategy p. In other words, in
a population where every one uses p, a small deviation to q
does strictly better than everyone using p.

We shall consider evolutionary games where each player has
a finite number of available pure actions and where the set of
strategies of a player is the set of probability distributions over
his actions. Let V (p, q) denote the expected fitness (utility) for
a player when playing a mixed policy p and when the fraction
of the population that plays each pure strategy i is given by
q(i). The expected fitness is then linear in both p and q and
can be written as pVqT where V is the matrix whose i, jth
entry equals V (i, j), and where p (resp. q) is a row vector
whose ith entry is p(i) (resp. q(i)). Theorem 1 then states
that the ESS of an evolutionary game can be characterized by
properties of the equilibria of an auxiliary game. In our case
this auxiliary game is the matrix game V. Note that not every
matrix game has an ESS.

V. ESS IN THE SEMI-DYNAMIC GAME

Consider the following two pure strategies of a player: (i)
always play D, and (ii) always play H. With some abuse of
notation we denote these policies by D and H. When writing
the long term fitness of players as a function of the system
parameters, we shall see that the fitness is linear in p and q
whereby p are now probabilities over the strategies H and
D and not over the actions H and D. This means that a

mixed strategy is obtained by tossing a coin, and according
to the outcome, the player always uses D or always uses
H . Notice that if we choose between action D and H with
some probability q at each time instant, then the expected
fitness need not be linear in q. This bilinear form of semi-
dynamic games allows us to apply directly the standard theory
of evolutionary games to the semi-dynamic case.

Recall that, even though we assume that each individual
mobile j always plays the same action, the sequence of actions
that are played by the mobiles encountered by some tagged
mobile are i.i.d.

While working with mixed strategies allows for directly
applying much of the framework of standard evolutionary
games, these policies do not allow for an evolution, as once we
perform the initial randomized selection between D and H ,
we shall always stick to that choice. Hence, to combine both
the flexibility that allows for evolution together with the linear
properties of the auxiliary game (the matrix game introduced
above), we assume that each mobile uses mixed policies for
some limited time T , after which a new choice is made and
so on.

VI. COMPUTING THE EQUILIBRIUM

Let Vn(i, α) denotes the expected fitness of a user who plays
i and starts at energy level n, i, j ∈ {H,D}. In view of this
definition we have, V (D,α) = VND

(D,α) and V (H,α) =
VNH

(H,α). We find the following recursions for Vn(i, α),

Vn(D,α) = (δ + (1− δ)αp1) + q1Vn−1(D,α)

+ q2Vn(D,α) ,

Vn(H,α) = (δ + (1− δ)α) + (1− α)(1− δ)p2
+ q3Vn−1(H,α) + q4Vn(H,α) .

The first equation expresses the total expected fitness of a
mobile of type D when starting with n units of energy, till
its battery empties. Hence, the equation is composed of two
expressions:

(i) The expected fitness corresponding to the current trans-
mission: with probability δ there is no interference at all
so the fitness is one unit. With probability (1−δ) there is
an interaction with another mobile. The fitness equals p1
when both mobiles use D which occurs with probability
α. Otherwise, it is zero.

(ii) The expected fitness collected after the transmission: we
first note that with probability q1, the energy level after
the transmission equals n− 1, so the expected fitness to
go is q1Vn−1(D,α). With probability q2 the energy level
is unchanged so the expected fitness collected after the
transmission is q2Vn(D,α).

The second equation can be explained following similar lines.
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Solving the recursions for q1 + q2 < 1 and q3 + q4 < 1
yields,

Vn(D,α) =
δ + αp1δ

1− q1 − q2

(
1−

(
q1

1− q2

)n)
,

Vn(H,α) =
δ + αδ + p2δ(1− α)

1− q3 − q4

(
1−

(
q3

1− q4

)n)
,

with δ = 1 − δ and whereby we assumed V0(D,α) =
V0(H,α) = 0. That is, no fitness can be collected if the battery
is empty.

A. With Breakdowns

Lemma 1. Assume that both hawks and doves are subjected
to breakdowns (q1 + q2 6= 1 and q3 + q4 6= 1), we have for
i ∈ {D,H},

V (i, α) = αV (i,D) + (1− α)V (i,H) , (6)

with,

V (D,D) =
δ + p1(1− δ)
1− q1 − q2

(
q1

1− q2

)ND

,

V (H,D) =
1

1− q3 − q4

(
1−

(
q3

1− q4

)NH
)
,

V (H,H) =
δ + p2(1− δ)
1− q3 − q4

(
1−

(
q3

1− q4

)NH
)
,

V (D,H) =
δ

1− q1 − q2

(
q1

1− q2

)ND

.

This allows us to express the equilibrium as follows.

Corollary 1. Assuming non-zero breakdown probability, the
following holds.
(i) D is a pure equilibrium if

1
1−q3−q4 ·

(
q3

1−q4

)NH

+ δ+p1(1−δ)
1−q1−q2 ·

(
q1

1−q2

)ND

> 1
1−q3−q4

(ii) H is a pure equilibrium if

δ+p2(1−δ)
1−q3−q4 ·

(
q3

1−q4

)NH

+ δ
1−q1−q2 ·

(
q1

1−q2

)ND

< δ+p2(1−δ)
1−q3−q4

(iii) Let

α∗ =

θ · δ

1− q1 − q2
− ρ · (δ + p2(1− δ))

1− q3 − q4

θ · ((1− δ)(1− p2))

1− q3 − q4
− ρ · ((1− δ)p1)

1− q1 − q2

where θ =

(
1−

(
q1

1−q2

)ND)
and ρ =(

1−
(

q1
1−q2

)NH)
. If α∗ is in the interior of the

unit interval then it is a mixed ESS.

Notice that the existence of the mixed strategy α∗ is still
not assured. Indeed, one must identify conditions on the
parameters in order to guarantee that α∗ lies in between 0
and 1.

Lemma 2. The mixed ESS α∗ is given by

α∗ =
V (H,H)− V (D,H)

V (D,D) + V (H,H)− V (H,D)− V (D,H)

We have the following existence conditions
(i) V (D,D) > V (H,D) and V (H,H) > V (D,H)

or
(ii) V (D,D) > V (H,D), V (H,H) < V (D,H) and
|V (H,H)− V (D,H)| > |V (D,D)− V (H,D)|.

We can therefore compute the value of the HD game.

Corollary 2. The value of the Hawk-Dove game is

V =
| ∆ |

V (H,H) + V (D,D)− V (H,D)− V (D,H)

where | ∆ | stands for the determinant of the matrix game G.

B. Without Breakdowns

Assume now that hawks and doves are not subjected to
breakdowns. We then have q1 = 1 − q2 and q3 = 1 − q4,
which yields

Vn(D,α) =
αp1(1− δ) + δ

q1
n

Vn(H,α) =
(1− δ) (1− α) p2 + δ + α(1− δ)

q3
n

In the latter case, we conclude the following

Lemma 3. In the absence of breakdowns (q1 = 1 − q2 and
q3 = 1− q4), we have for i ∈ {D,H},

V (i, α) = αV (i,D) + (1− α)V (i,H) , (7)

with,

V (D,D) =
p1(1− δ) + δ

q1
ND , V (H,D) =

1

q3
NH ,

V (H,H) =
(1− δ) p2 + δ

q3
NH , V (D,H) =

δ

q1
ND

This gives us the following equilibria.

Corollary 3. In the absence of breakdowns, the following
holds.
(i) D is a pure equilibrium if (p1(1−δ)+δ)q3ND > q1NH .

(ii) H is a pure equilibrium if (p2(1−δ)+δ)q1NH > δq3ND.
(iii) Let

α∗ =
δ q3ND − q1 (p2(1− δ) + δ)NH

(1− δ) (q1(1− p2)NH − q3p1ND)
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Fig. 1. Variation of α as function of ND .

If α∗ is in the interior of the unit interval then it is a
mixed ESS.

At the equilibrium, Let β = (β, 1− β) and α = (α, 1− α)

be two row vectors of probability measures over the available
actions D,H . Let V be a matrix whose (i, j)th entry is given
by V (i, j). In accordance with Definition 2, denote by V (β, α)
the expected fitness of a player who always plays strategy D
with probability β and always H with probability 1−β, while
the fraction of individuals in the population that play D is α.
We then make the following key observation regarding the
total expected utility.

Lemma 4. The expected utility for a player that chooses to
be D with probability β given that the fraction of D in the
population is α can be written in a vector form as

V (β, α) = βVαT .

It is thus bilinear. It can therefore be interpreted as the
expected fitness for a player in an equivalent one shot game
(a symmetric static evolutionary game) where the fraction of
D in the population is α and where the player chooses D with
probability β. The equilibrium given in Lemma 1 is an ESS.

VII. THE INITIAL ENERGY PARADOX

Consider the case without recharging (the case of recharging
is similar). Figure 1 shows the impact of the initial energy level
— say ND — on the equilibrium proportion α of D. We here
used the following variables: p1 = 0.3, p2 = 0.8, q1 = 0.6,
q3 = 0.9, δ = 0.1 and NH = 1. We can now identify a
surprising paradox in the HD game referred to as the initial
energy paradox. We see that the larger ND is, the smaller is the
fraction α. This is paradoxical because a larger ND gives an

advantage to the Doves - by choosing D a mobile can transmit
more packets: both V (D,D) and V (D,H) increase. As usual
in paradoxes in games, the equilibrium is not necessarily
monotone increasing in the utilities. Some intuition to this
behavior is obtained by recalling that a mixed equilibrium α∗

is characterized by the indifference principle that states that
α∗ is such that the fitness of a player is the same under D and
H . Now, by changing ND this does not change the fitness of
H . It increases, but V (D,H) increases more than V (D,D).
Therefore to keep each player indifferent between D and H ,
α∗ should decrease!

VIII. CONCLUSION

We have studied in this paper a semi-dynamic version of the
Hawk and Dove game within the framework of evolutionary
games. We have considered the property that the state tran-
sition of an individual player depend only on its own action
and not on the behavior of other players that it meets. The
action of the other player has only an impact on the immediate
fitness. We identify a surprising paradox in our Hawk-Dove
game namely, the initial energy paradox which offers insights
on how mobiles behave in the framework of semi-dynamic
Hawk and Dove game.
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