
 

Abstract-- we present network virtualization (building 
virtual or logical networks over a physical infrastructure) 
and network programmability (allowing the network 
operator to at least control the network but more 
fundamentally to define its behavior) concepts. 

I.  INTRODUCTION 
Building networks is a very costly issue. Therefore, it 

is important to save as much as possible costs. Two 
approaches are crucial in this respect: 
1. Building infrastructures delivering tremendous amount 

of network capacity reducing the relative per-unit cost 
thanks to the economy of scale effects. Of course, 
gaining from economy of scale effects only makes 
sense when the infrastructure can be shared amongst 
different parties in order not to waste / underutilize its 
massive capacity: virtualization is crucial to realize 
this. For example, WDM networks allow sharing the 
fiber / transmission infrastructure by multiplexing 
virtual IP network links over the same fiber pair. 

2. Building as flexible as possible infrastructures without 
jeopardizing their performance in order to gain from 
economy of scope effects. The increased flexibility 
through configurability and programmability enables 
the infrastructure to serve a broader scope of 
applications rather than serving a single/few 
applications requiring building and managing several 
infrastructures in parallel and/or replacing them more 
frequently as requirements by the application changes 
over time. 
This paper applies these key concepts to network 

infrastructures. 

II.  NETWORK VIRTUALIZATION 
Bottom line network virtualization means abstracting 

the physical infrastructure from the virtual networks. 
Thus, overlay networks are the simplest form of network 
virtualization: e.g., in IP-over-Optical Transport 
Networks (OTNs) the direct IP links are replaced by 
lightpaths across the OTN. 

A more advanced form of network virtualization refers 
to the fact that part of the physical infrastructure is 
handled as a virtual network. In this way, the abstraction 
guarantees that the virtual network is hidden from what 
happens on the rest of the infrastructure allowing the 
infrastructure to be shared by several virtual networks. IP 
routers may instantiate multiple so-called Virtual Routing 
and Forwarding (VRFs) instances: VRFs are typically 

                                                           
This work was supported by the European Commission through the 

OFELIA, SPARC and BONE projects. The work was also supported by 
the Flemish government (FWO-Vlaanderen) through the project 
G.0107.05 and G.0578.08. 

instantiated on a per-VPN basis in the Provider Edge 
(PE) routers in BGP/MPLS IP VPN provider networks 
[1]. An advantage of the independent VRF instances is 
that overlapping address ranges in the different VPNs 
don’t lead to conflicts. In optical cross-connects, this 
would translate to define a virtual cross-connect by 
selecting the physical ports part of that virtual cross-
connect. 

Instantiating multiple virtual instances inside a 
physical network node and interconnecting these virtual 
network nodes (multiplexed over shared links) enables 
“slicing” huge physical network infrastructures that can 
benefit from the economy of scale effects. A slice in an 
OTN (see Fig.  1) may thus correspond to a wavelength 
range for which the virtual cross-connects can only cross-
connect these wavelength between the network links part 
of the slice. 

 
Fig.  1: network slicing in OTNs. 

 
Another form of network virtualization is turning 

general purpose machines into network equipment: e.g., 
software routers like the CLICK modular router are an 
example of this form of virtualization / hardware 
abstraction [2]. 

III.  NETWORK PROGRAMMABILITY 
Bottom line, network programmability means that 

multi-purpose bare hardware can be (re-)programmed / 
turned at any time into a specific product addressing 
specific (single or combination of) purpose(s) that may 
change over time. For example, today no or very few 
products can act as PBB-TE or (G)ELS switch [3] (or a 
combination of both in case of network slicing), although 
they are both a kind of label switch (functionally similar 
as an MPLS switch) where the labels are encoded in the 
Ethernet frames (either VLAN-ID + MAC address or 

  Network virtualization and programmability 
Didier Colle*, Bart Jooris*, Pasquale Gurzi**, Mario Pickavet*, Piet Demeester* 

*   Ghent University – IBBT, Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium 
**   VUB CoMo lab, Pleinlaan 2, 1050 Brussels, Belgium 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55688168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

only the VLAN ID): network programmability avoids 
these product specific limitations. 

Some initiatives going in that direction have already 
been initiated. The Forwarding and Control Element 
Separation (ForCES) [4] IETF working group defined a 
framework and protocol to directly control/configure the 
functional elements of an IP router. The OpenFlow 
initiative [5] provides a protocol interface that allows 
configuring a flow table consisting of a bit string filter 
identifying the flow and the corresponding actions (like 
forwarding on a particular port or dropping packets) 
belonging to that particular flow. In both cases, a split 
architecture is envisaged: the node controllers do not 
need to reside anymore in the nodes (network elements) 
but can run somewhere else. They differ in the sense that 
the ForCES initiative is currently more advanced in 
opening up different functional elements, but focusing on 
IP technology, whereas the OpenFlow protocol is more 
generic as it does not restrict itself to a specific network 
technology by more directly addressing the bare hardware 
(e.g., TCAMs in which the flow tables are stored). The 
OpenFlow protocol thus allows for example traffic 
engineering particular flows that can be defined on a 
MAC address, IP address and/or TPC/UPD port level 
while keeping the default routing for the other traffic. 

The European FP7 research SPARC [7] will define a 
carrier-class split architecture blueprint, by extending the 
OpenFlow protocol and prototyping the proposed 
solution. Focusing on carrier-class split architecture 
means the SPARC project will research issues like 
scalability, reliability, etc. 

A split architecture where external controllers can 
control/configure functional elements or bare hardware is 
already a huge step in the direction of network 
programmability. However, network programmability at 
its full potential should also be capable of enabling the 
programming of functionalities into general purpose 
hardware. For example, a network element based on the 
CLICK modular router [2] would require a protocol 
interface that allows external controllers to load the 
network element with any CLICK element and to specify 
how these CLICK elements should be linked together. 
Although CLICK modular routers are software based and 
thus not capable of delivering the highest performance, 
approaches as in the NetFPGA initiative [6] have that 
potential as the network ports connect to a large FPGA 
that can be reprogrammed with any bitware as long as it 
fits in the FPGA footprint. 

IV.  THE PROGRAMMABLE NETWORK SLICE 
As discussed above, both the network virtualization 

and network programmability concepts are important 
tools in reducing costs. A mix of both results in an even 
higher cost saving potential. 

Fig.  2 illustrates how this can be achieved. At the left, 
the programmable network element (e.g., an OpenFlow 
switch) is shown. In the middle, a controller proxy (in 
case of OpenFlow this is called a FlowVisor) guarantees 
that controllers belonging to one network slice cannot 
control/affect/access the virtual node from another slice. 

At the right side, a controller per slice is shown that 
controls the part of the hardware/network element 
belonging to that slice through the controller proxy. 

 
Fig.  2: programmable network slices 

The European FP7 FIRE facility project OFELIA [8] 
will build an experimental facility supporting the Future 
Internet research activities in Europe by allowing 
experimenters controlling network slices consisting of 
several technologies through the OpenFlow protocol. 

V.  FLEXIBLE PROGRAMMABLE OPTICAL 
NETWORK NODES 

Within the OFELIA project, a flexible optical network 
node will be designed and build. The intention is to 
develop a mother board providing an I2C or SPI interface 
to a General Purpose I/O (GPIO) expander chip. These 
GPIO pins are then grouped in smaller sets such that each 
set is brought in a standardized manner to a daughter card 
featuring an optical component like a 2x2 optical switch 
module. A controller card (e.g., an embedded PC like the 
ALIX) can then control through the I2C or SPI interface a 
bunch of optical switch modules plugged in onto a (few) 
mother board(s). From a software perspective, a virtual 
switch multiplexer module on top of the I2C or SPI driver 
module will translate the GPIO addresses within a slice to 
the correct global GPIO pin addresses and pass on the 
commands to/from those GPIO pins. Per slice, a virtual 
switch software module will then translate the OpenFlow 
commands to the proper GPIO signals/commands and 
vice versa, according the specific wiring of the optical 
components in that slice. 

Assuming all daughter cards feature 2x2 optical switch 
modules, one experiment may use 6 optical switch 
modules to create a 4x4 OXC, while another one can in 
parallel build a ROADM, by wiring its optical switch 
modules to passive WDM (de)multiplexer modules. 

REFERENCES 
 

[1] E. Rosen, Y. Rekhter, “BGP/MPLS IP Virtual Private 
Networks (VPNs)”, RFC4364, February 2006. 

[2] CLICK modular router project: 
http://read.cs.ucla.edu/click/click. 

[3] D. Colle, W. Tavernier, A. Gladisch, “Ethernet: beyond the 
LAN?”, DRCN2007 tutorial, October 7th, 2007: 
http://ibcn.intec.ugent.be/downloads/Tutorial%20DRCN20
07.pdf 

[4] ForCES IETF WG: http://datatracker.ietf.org/wg/forces/ 
[5] The OpenFlow project: http://www.openflowswitch.org/ 
[6] The NetFPGA project, http://netfpga.org/ 
[7] FP7 SPARC project: http://www.fp7-sparc.eu/ 
[8] FP7 OFELIA project: http://www.fp7-ofelia.eu/ 


