N₂O-emissions from soil with different biochar amendments

Nele Ameloot*, Stefaan De Neve and Sara De Bolle

Research Group of Soil Fertility and Nutrient Management, Department of Soil Management, Ghent University, Coupure links 653, 9000 Ghent, Belgium

Abstract

Biochar, produced during the pyrolysis of biomass, is considered to be highly recalcitrant against decomposition, and therefore contributes to the sequestration of C into the soil. However the effect of biochar on the emission of the greenhouse gas nitrous oxide (N₂O) is not well known. N₂O is a much more powerful greenhouse gas (with a CO₂-equivalent of 298) and is the main source of stratospheric nitric oxide which damages the stratospheric ozone layer. Controlling the N₂O emissions from soils is thus an important challenge in tackling the greenhouse effect and consequently climate change. N_2O is produced as a byproduct of the denitrification process of NO₃⁻ to N₂ into soils, in a lesser extent N₂O can also be produced during nitrification processes (of NH_4^+ to NO_3^-). Nevertheless N_2O emissions are considered to be more driven by reduction than by oxidation soil processes, therefore aeration of the soil contributes to the reduction of N₂O. Since biochar amendment has been shown to increase soil porosity, it is assumed to contribute to the reduction of N₂Oemissions. However, biochar amendments also influence soil properties such as the microbial community structure, pH and the nutrient use efficiency, and therefore the effect of biochar amendments on N₂O-emissions is probably very complex and not clear. In addition pyrolysis of different feedstocks results in biochars with different effects on soil properties.

A laboratory experiment was conducted in order to determine the effect of different biochar-type amendments on the N₂O-emissions. Six soil treatments were established, in this way the effect of fresh organic matter (OM) and two types of biochar (BC₁ en BC₂) on the N₂O-emission from the soil was studied against a control treatment. In every treatment KNO₃ was applied to the soil in order to supply the microbial community with a source of N.