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Abstract: Optomechanics might provide the key to realize various signal processing functions on 

a chip. In this proceeding we focus on silicon Nano-Optomechanical Systems (NOMS) and 

provide an overview of several types of optomechanical devices. 
 

1. Introduction 

Besides the well known optical trapping of microparticles in laser beams [1], the optical gradient force also enables 

actuation of nanophotonic components [2][3]. Hence a new class of components was created: Nano-Optomechanical 

Systems (NOMS), an interesting candidate for realizing all-optical functionality such as all-optical switching via a 

NOMS circuit [4]. On the more fundamental level the recent developments in optomechanics are quickly leading 

towards intriguing physical phenomena such as observation of quantum mechanical behavior of a micromechanical 

oscillator [5][6]. On the more practical level full integration (both access waveguides and optomechanical 

components on a chip)  of the devices is needed. Besides all-optical components also on chip reference oscillators 

and widely tunable RF-filters in the optical domain are possible applications. In this paper, we will review a variety 

of integrated optomechanical devices designed and fabricated in silicon-on-insulator. 

 

2. Attractive and repulsive forces between parallel waveguides 

Using Deep-Ultra-Violet lithography and subsequent RIE etching [7] a passive nanophotonic can be defined in a 

silicon-on-insulator wafer (top Si layer with 220nm thickness). Buffered HF is used to etch the underlying SiO2 at 

some parts of the chip such that freestanding structures are created.  Light can be coupled in and out of the chip 

using two grating couplers. Experiments are performed in a vacuum environment (p<<1mBar) to avoid air damping 

and achieve a sufficiently high mechanical quality factors. In the simplest configuration when a single waveguide is 

suspended, an out of plane attractive force towards the substrate will arise when light is sent through [8]. In a 

configuration with two parallel waveguides a superposition of two guided modes are present (ground mode is 

attractive in nature while the first mode pushes the waveguides apart). While the ground mode is providing a gap 

closing force, the first order mode pushes the waveguides apart. If the parallel waveguides are excited through only 

one waveguide both modes are excited equally which results in a net in plane attractive force [8]. When 

implementing an asymmetric Mach-Zehnder interferometer in front of the coupler the modes can be controlled by 

sweeping the wavelength.  Both attractive and repulsive forces can be observed experimentally (Fig.1b) [10][11].  

   
(a)                 (b) 

Fig. 1. (a) SEM picture of the structure used in [10] to select between the two propagating modes. (b) The optical force is varying from attractive 

to repulsive in function of the wavelength.  
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3. Enhancing the optical force: slots and resonators 

In a slotted waveguide the light is mainly confined in the small air gap. Due to the related strong field gradients 

slotted waveguides exhibit relatively large optomechanical effects. In Fig. 2a an experimental forced vibration 

spectrum is shown [12] from a 12µm long freestanding slotted waveguide (beam width 230nm and height=220nm, 

gap=120nm). The vibration spectrum shows a peak of approximately 2.5nm around 13.05MHz and a jump that is 

caused by the inset of non-linear mechanical spring hardening at large vibration amplitudes. The slot waveguide was 

placed in a Fabry-Pérot cavity to translate the vibration induced phase modulation into power modulation. 

 
             (a)                                 (b)                               

Fig. 2 (a) Vibration amplitude spectrum for 1mW modulated optical power in a freestanding slotted waveguide with jump non-linearity.- 

(b) thermal „brownian‟ response of a freestanding beam in a racetrack resonator for λ=1557.5; schematic  representation  of the structure (inset) 

If the micromechanical oscillator is placed in an optical ring or racetrack resonator as shown in Fig. 2b (inset) again 

out of plane optomechanical interaction is possible between the freestanding waveguide in the ring resonator and the 

substrate [13], however the interaction is enhanced by the optical resonator (finesse200). The brownian 

displacement noise of the ground mode of such a freestanding beam is shown in Fig. 3b. When light is circulating 

inside the resonator we can pick up the signal of the fundamental mode (105.55MHz, mechanical Q370) of the 

released beam (length 2.6µm, width 500nm, thickness=220nm) resulting in a displacement sensitivity of 8fm/rtHz. 

5. Conclusion 

We have demonstrated repulsive and attractive forces between waveguides. Slotted waveguides and racetrack 

resonators enhance optomechanical effects strongly, possibly leading towards integrated functional NOMS circuits. 
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