
Self Management of a Mobile Thin Client Service

Lien Deboosere, Bert Vankeirsbilck, Pieter Simoens,
Filip De Turck, Bart Dhoedt and Piet Demeester

IBBT - Department of Information Technology (INTEC), Ghent University
Gaston Crommenlaan 8, bus 201, 9050 Gent, Belgium

Lien.Deboosere@intec.ugent.be

ABSTRACT
Mobile thin client computing is an enabler for the execution of de-
manding applications from mobile handhelds. In thin client com-
puting, the application is executed on remote servers and the mobile
handheld only has to display the graphical updates and send input
from the user to the remote execution environment. To guarantee a
high user experience in a mobile environment, a Service Manage-
ment Framework is required to prevent users observing lower Qual-
ity of Experience due to changes in the available network, server
and client resources. Therefore, the Service Management Frame-
work monitors the environment and the Self Management compo-
nent intervenes when necessary, e.g. by adapting the thin client
protocol settings or moving a user session from one server to an-
other. The design of the Self Management component is presented
and the performance is evaluated.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Domain-
specific architectures

General Terms
Design, Management, Performance

1. INTRODUCTION
In the thin client computing paradigm, computation and storage

are shifted from the client terminal to the network. User applica-
tions are executed on a remote server and the client device only
deals with user interaction and rendering of the screen graphics
(e.g. Virtual Network Computing (VNC) [1]). The thin client con-
cept is very promising for mobile users: all applications can be
executed without resorting to a restricted mobile version of the ap-
plication. Furthermore, redundant hardware can be stripped from
the device, resulting in potentially energy efficient, thin devices.

It is of the utmost importance that the thin client service is ubiq-
uitously available and offers a high Quality of Experience (QoE).
Ideally, every user should perceive the same application responsive-
ness as when running the application locally. To meet these chal-
lenges, a Service Management Framework (SMF) is required that
aims for a global optimal state of the infrastructure while provid-
ing all users sufficient QoE. In Figure 1, three components of the
proposed mobile thin client service can be distinguished: a man-
agement server, a thin client server and a client terminal. The SMF

Copyright is held by the author/owner(s).
MobiHeld’09, August 17, 2009, Barcelona, Spain.
ACM 978-1-60558-444-7/09/08.

is distributed among the three components. By monitoring the en-
vironment, the SMF detects and adapts to variations in the state of
the environment in which the mobile thin client service operates.

By adopting virtualization technologies (e.g. Xen [2]) on the
thin client server, each user operates in his own dedicated Virtual
Machine (VM). Furthermore, the online migration tool of current
virtualization technologies enables moving VMs to other servers
without the user noticing [3]. In the next sections, the design and
evaluation of the Self Management as a part of the SMF will be
discussed.

user input
(e.g. keystrokes)

audiovisual output

Thin Client ServerThin Client Management Server

Figure 1: The Service Management Framework (SMF) is dis-
tributed among management servers, thin client servers and
client terminals.

2. SELF MANAGEMENT
The Self Management component controls and optimizes the

mobile thin client service in order to guarantee a high user ex-
perience. The Self Management component is distributed among
the different levels of the service: the management server, the thin
client server, the user’s session and the mobile handheld.

When the Monitoring component reports a problem to the Self
Management component at a certain level, the Self Management
component first tries to solve the problem on its own level (e.g.
by adapting thin client protocol settings, or by reserving more re-
sources, etc.). When the problem cannot be solved locally, the com-
ponent on the higher level is triggered. On the highest level, i.e. the
management server, the Self Management component should be
able to solve the problem. In the remainder of this article, the de-
sign and evaluation of the Self Management component located on
the level of the management server is discussed.

The design of the Self Management component is based on the
well-known MAPE (Monitor-Analyze-Plan-Execute) model [4] and
is illustrated in Figure 2. To enable rapid and simplified implemen-
tation of the SMF, Java EJB3 has been used. An EJB is a managed
component controlled by a JEE application container. The con-
tainer controls the lifecycle of the EJBs and their resources.

The Monitor component sends standard Simple Network Man-
agement Protocol (SNMP) trap messages to notify the management

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55688041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Self Management

Message Driven
Bean Pool

Decision
(Singleton)

- server selection
- migration algorithm

Execution
(Thread Pool)

Analyze Plan Execute

Monitoring

SNMP
Resource Adapter

Monitor

Queue

SNMP Trap
message

Figure 2: Design of the Self Management component

server of a problem. In order to redirect these SNMP trap messages
to the Self Management component, a Java Connector Architecture
(JCA) [5] resource adapter is required. The SNMP resource adapter
forwards the SNMP trap messages to all registered JEE Message-
Driven Beans (MDB).

The Analyze component, a registered MDB, receives the SNMP
trap messages. In order to understand an SNMP trap message sent
by the Monitor component, the Self Management component has to
know what the object identifier (OID) field of the standard SNMP
trap message defines. OID’s are described in a Management Infor-
mation Base (MIB). Based on the OID, the MDB analyzes the prob-
lem and for example looks up extra information that could be used
by the decision-making component. When all desired information
is gathered, the Self Management is ready to make a decision.

The Plan component, the decision-making component, is a sin-
gleton component in order to prevent simultaneous, conflicting de-
cisions. Currently, this component contains two algorithms: (i) a
server selection algorithm and (ii) a migration algorithm. The first
algorithm selects a thin client server able to host the user’s VM
based on the current state of the environment. The migration algo-
rithm selects at least one VM from a thin client server that should be
migrated to another thin client server. The target thin client server
is selected by means of the server selection algorithm.

The Execute component executes the decision in a separate thread.

3. EXPERIMENTAL RESULTS
The testbed to evaluate the Self Management component consists

of a management server (dual CPU Quad-core AMD Opteron 2350,
8 GB RAM) and 2 thin client servers (Dual CPU Dual-Core AMD
Opteron 2212, 4 GB RAM). The adopted virtualization technology
in the experiments is Xen 3.1.

In the experiments, a thin client server becomes overloaded and
an appropriate SNMP trap message is sent to the management server.
The only solution is to migrate at least one of the VMs running on
the overloaded thin client server to another one. The server selec-
tion algorithm selects in a round-robin way a server from the list of
available thin client servers. The implemented migration algorithm
selects a random VM to be migrated to another thin client server.

The time spent in each component of the MAPE-chain presented
in Figure 2 is (Monitor) 0.58 ms, (Analyze) 0.02 ms, (Plan) 1.2 ms
and (Execute) 0.008 ms + total migration time (see Figure 3(a)).
As can be seen from Figure 3(a), the total time spent on the live
migration of a VM depends on the size of the memory allocated
for that VM. The larger the VM’s memory, the more information
has to be copied to the new server and thus the longer it takes to
finalize the migration. It should be noted that at the end of the
live migration, the VM is frozen in order to copy the last changed
memory state and bring the VM up on the new server. This freezing
time is referred to as downtime. In our experiments, downtimes up
to 300 ms were measured.

From user perspective, the downtime should be kept as small
as possible, while from infrastructure perspective, the total time of
the online migration is the most important parameter. The faster
resources can be released, the faster the server load can be bal-
anced. From Figure 3(a), it can be seen that the migration time is

0

20

40

60

80

100

120

128 256 512 1024

M
ig

ra
ti

o
n

 T
im

e
(s

)

Memory size of the Virtual Machine (MB)

(a) Total time to live migrate
a Xen VM.

1

10

100

1000

10000

100 200 300 400 500 600

A
ve

ra
ge

 r
es

p
o

n
se

 t
im

e
(m

s)

SNMP messages/s

(b) Average response time to
an SNMP message.

Figure 3: Experimental results

linearly proportional to the memory size of the VM. When a thin
client server is overloaded, the migration algorithm has to decide
which VM(s) should be migrated based on the memory size of the
VMs in order to optimize the thin client service. In Figure 3(b), an
evaluation of the performance of the Self Management component
under high load shows up to 700 SNMP trap messages per second
can be handled within on average 3.5 ms.

4. CONCLUSION AND FUTURE WORK
A high quality mobile thin client service requires a Service Man-

agement Framework. When environmental changes are detected,
the Self Management component of the Service Management Frame-
work intervenes to optimize the mobile thin client service and guar-
antee high user experience all the time. The Self Management com-
ponent currently comprises two decision algorithms: (i) a server
selection algorithm that selects a thin client server able to run the
user’s VM and guarantee the desired quality and (ii) a migration al-
gorithm that decides which VM(s) should be migrated to another
thin client server. The time spent between detecting a problem
and the execution of the problem is on average 1.8 ms, while the
duration of the migration of a VM is linearly proportional to the
memory size of the VM. It was shown that the implemented Self
Management component can handle up to 700 reported problems
per second. Future work encompasses extending the Self Manage-
ment component with additional algorithms to further optimize the
mobile thin client service.

5. ACKNOWLEDGEMENT
Part of this research was done for the MobiThin Project and has

received funding from the European Community’s Seventh Frame-
work (FP7/2007-2013) under grant agreement nr 216946. Lien De-
boosere and Bert Vankeirsbilck would like to thank IWT-Vlaanderen.
Pieter Simoens and Filip De Turck would like to thank FWO-V.

6. REFERENCES
[1] T. Richardson, et al., Virtual Network Computing. IEEE

Internet Computing, 02(1):33–38, 1998.
[2] P. Barham, et al., Xen and the Art of Virtualization. In SOSP

’03: Proceedings of the 19th ACM symposium on Operating
systems principles, pages 164–177, New York, USA, 2003.

[3] C. Clark, et al., Live Migration of Virtual Machines. In NSDI
’05: Proceedings of the 2nd ACM Symposium on Networked
Systems Design and Implementation, pages 273–286, Boston,
USA, 2005.

[4] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing. Computer, 36(1):41–50, 2003.

[5] R. Sharma, B. Stearns, and T. Ng. J2EE Connector
Architecture and Enterprise Application Integration.
Addison-Wesley, Pearson Education, 2001.

