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I. INTRODUCTION pole-residue form is built for all grid points in
the design space by means of the Vector Fitting
(VF) technique [2]. A pole-flipping scheme is
space exploration, design optimization and Senysed to enforce strict stability_ [2] and passivity
sitivity analysis of microwave structures. Para_enforcement can be accompllshed using one of
metric macromodels can take multiple designt€ robust standard techniques [3]. The result
of this initial step is a set of rational univariate

variables into account, such as geometrical lay- del bl d ) h I
out or substrate features, in addition to time orMacromodels, stable and passive, that we cal
frequency [1]. root macromodeldeing the starting points to

This paper presents a novel technique tQuild the global parametric macromode!.

build accurate_ multivariate ra_tlonal macromod-B. 2-D Macromodeling
els for scattering representations that are stable
and passive over the entire design space. The In this section we discuss the represen-
technique is validated by a numerical exampletation of a bivariate macromodel. Once the
root macromodelsare available, the bivariate

Robust parametric macromodeling is becom
ing increasingly important for efficient design

Il. PARAMETRIC MACROMODELING macromodeR (s, g) can be written as:
The goal of the proposed algorithm is to K
build a multivariate representatiolR (s, g) -
. ? — l
which accurately models a large set of R(s,9) ZR(S’Q’“)Z’“@ (3

Kiot data samples{(s, §)r, H(s, §)x} 123" =t

and guarantees stability and passivity over thavhere the interpolation kernets (g) are scalar
entire design space. These data samples depefitnctions satisfying the following constraints:
on the complex frequency = jw, and sev-
eral design variableg = (¢(™)%_,, such as o
the layout features of a circuit (e.g. lengths, N5 .
widthsy,...) or the substrate pafrargnetersg(e.g. be(9) 2 0, Lu(gi) = O, ;Zk(g) =1
thickness, dielectric constant, losses,...). a )
A suitable choice is to seleé},(g) as in piece-
wise linear interpolation. The model in (1) is
Starting from a set of multivariate data sam-a linear combination of stable and passive uni-
ples, a frequency dependent rational model in arariate models by means of a class of positive
interpolation kernels [4]. Stability is automati-
. — ~ cally preserved in (1), as itis a weighted sum of
Tec-hng%’;}' ('ISNV_‘F'ItEhC;]eG%ee%?”S‘n?\%r‘;‘;t}'/”fﬁjggtr']%’j stable rational macromodels. The proof of the
Gent, Belgium. E-mail: francesco.ferranti@ugent bePassivity preserving property of the proposed
. technique over the entire design space can be

A. Root Macromodels
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found in [5]. The generalization to a multi- maximum absolute error over the reference grid
variate model can be realized by a multivari-is bounded by-64.4 dB.
ate interpolation scheme called piecewise mul-

tilinear interpolation. The proposed parametric

macromodeling technique is general and any o8 §§§§§§$\§§$\§$§\\
. . . B N NN
interpolation scheme that leads to a parametric 2NN

macromodel composed of a weighted sum of & %6

root macromodelsvith weights satisfying (2)
can be used.

A. Double folded stub microstrip bandstop fil-
ter

N UMERICAL EXAMPLE

The double folded stub microstrip bandstop Length [mm]
filter under study is shown in Fig. 1. The para-
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metric macromodel of the scattering matrix is Figure 2. Magnitude of the trivariate models.$f;

built as function of the varying length of each
folded segment. € [2.08 - 2.28] mm and

(light grey surface) and'>; (dark grey surface)
for S = 0.091 mm.

varying spacing between a folded stub and the

main lineS € [0.091 - 0.171] mm over the
frequency rangéb - 20] GHz. All data is sim-
ulated by ADS-Momentumover a reference
grid of 300 x 60 x 60 sampleq freq, L, S).

Figure 1. Geometry of the double folded stub mi-
crostrip bandstop filter.

441 root macromodelare built for21 values of
the length () and21 values of the spacing)

IV. CONCLUSIONS

We have presented a new macromodeling
technique for parameterized scattering repre-
sentations. An efficient and reliable combina-
tion of rational identification and interpolation
schemes based on a class of positive interpo-
lation operators guarantees the overall stability
and passivity of the parametric macromodel.
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