Strategies for Dynamic Memory
Allocation in Hybrid Architectures

Peter Bertels
peter.bertels@ugent.be

Wim Heirman
wim.heirman@ugent.be

Dirk Stroobandt
dirk.stroobandt@ugent.be

Department of Electronics and Information Systems
Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

ABSTRACT

Hybrid architectures combining the strengths of general-
purpose processors with application-specific hardware ac-
celerators can lead to a significant performance improve-
ment. Our hybrid architecture uses a Java Virtual Machine
as an abstraction layer to hide the complexity of the hard-
ware/software interface between processor and accelerator
from the programmer. The data communication between
the accelerator and the processor often incurs a significant
cost, which sometimes annihilates the original speedup ob-
tained by the accelerator. This article shows how we min-
imise this communication cost by dynamically chosing an
optimal data layout in the Java heap memory which is dis-
tributed over both the accelerator and the processor mem-
ory. The proposed self-learning memory allocation strategy
finds the optimal location for each Java object’s data by
means of runtime profiling. The communication cost is ef-
fectively reduced by up to 86% for the benchmarks in the
DaCapo suite (51% on average).

Categories and Subject Descriptors

B.3.2 [Memory Structures|: Design Styles—Shared mem-
ory; D.3.4 [Programming Languages]: Processors—Mem-
ory management; D.4.2 [Operating Systems]: Storage
Management— Distributed memories

General Terms

Algorithms, Experimentation, Performance

Keywords

Hardware acceleration, Java, Memory management

1. INTRODUCTION

Hardware accelerators or other application-specific copro-
cessors are used to improve the performance of computa-
tionally intensive programs. Large speedups are achieved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CF’09, May 18-20, 2009, Ischia, Italy.

Copyright 2009 ACM 978-1-60558-413-3/09/05 ...$5.00.

217

by exploiting massive parallelism in hot code segments [3].
Recently, the same methodology has been applied to Java
programs [4]. Two main directions can be identified in this
domain: acceleration of the Java Virtual Machine (JVM)
itself and acceleration of specific methods of Java programs.
In the first approach additional hardware provides specific
Java functionality such as thread scheduling and garbage
collection or the translation of bytecode to native instruc-
tions [9]. A further evolution of this idea is a Java-specific
processor that natively executes bytecode [10]. In the sec-
ond approach, an application-specific hardware accelerator
executes in parallel with the main processor. Additionally,
we consider the hardware as an integral part of the JVM
rather than an application-software controlled device. An
advantage of this approach is that the hardware accelera-
tion is transparent to the Java programmer. If the hard-
ware accelerator is reconfigurable, functionality can even be
moved dynamically from the general-purpose processor to
the accelerator [5]. Hardware execution is then an addi-
tional optimisation step in the just-in-time compiler, where
the hardware configuration can be loaded from a library [2]
or even generated on-the-fly [6].

In this article we concentrate on the latter approach be-
cause it uses the hardware only for specific functions where
a significant speedup can be obtained as has been shown
in several hardware implementations [3]. Less hardware-
friendly methods are left in software which contrasts to the
first approach where often a significant amount of hardware
resources needs to be allocated for functionality like memory
management, scheduling ...Our approach leads to a hard-
ware accelerated JVM which is described in Section 2. In
such a hybrid architecture, the JVM has to manage schedul-
ing and memory allocation, also for functionality executed
in hardware. Java’s shared-memory model now extends to
the accelerator’s local memory. The JVM must be extended
such that both native Java code and the accelerator can
access all objects, independent of their physical location.

An important task of the JVM is the placement of ob-
jects in the distributed Java heap. Since the accelerator
is usually connected through a relatively slow communica-
tion medium, remote memory accesses are costly and should
thus be avoided as much as possible. To this end, the JVM
should allocate objects in the memory region closest to the
most prolific user of the data. This way, data private to
a thread is always in local memory, which minimises com-
munication overhead. A static analysis is not sufficient for
solving the object placement problem as it can only estimate
which data are private to a method conservatively. More-

hardware
accelerator

) (e

host processor

main memory

Figure 1: Hybrid hardware platform

| application |

| Java virtual machine |

| host processor || hardware accelerator |

Figure 2: The JVM hides the complexity of the un-
derlying hybrid architecture from the application.

over, shared data can be accessed asymmetrically by the dif-
ferent system components, the ratio in accesses among com-
ponents is often data dependent and thus hard to estimate
at compile-time. Finally, when functionality is dynamically
migrated between general-purpose processor and hardware
accelerator, a runtime approach can no longer be avoided.

We propose several techniques for communication-aware
memory management in Section 3. For each Java object,
the optimal memory location is determined based on the
usage pattern of this object. The self-learning approach
tries to estimate the usage patterns for each object based
on measured patterns for previously allocated objects. This
technique is compared to a baseline algorithm which does
not take communication cost into account, and to a static
technique for local memory allocation which tries to reduce
communication overhead without actually measuring data
access patterns. Our data placement strategies lead to a re-
duction of the remote memory accesses by up to 86% (51%
on average) for the DaCapo benchmarks (Section 4).

2. HARDWARE ACCELERATED JVM

2.1 Host processor and hardware accelerator

In this work we use the classical concept of an acceler-
ator as a coprocessor: the hardware platform is a hybrid
architecture, consisting of a general-purpose host processor
and an application-specific hardware accelerator (Figure 1).
The accelerator executes a small but computationally inten-
sive part of the Java application, while the host processor
executes the remainder of the application. In this hybrid
architecture, the processor and the accelerator both have
their own local memory. The connection between the two
components is realised by means of a relatively slow bus
such as PCI, HyperTransport, Therefore, effective use
of this platform is usually limited to algorithms with a high
computation to communication ratio. For this class of appli-
cations a significant speedup can be obtained by exploiting
the massive parallelism available on FPGAs or ASICs [8].

2.2 JVM as hardware abstraction layer

We want to hide the complexity of managing control flow
and communication between the accelerator and the host
processor from the programmer. Also, when the hardware
accelerator is reconfigurable, functionality can be moved dy-
namically from the host processor to the accelerator by load-
ing the appropriate configuration from a library or even by
generating a hardware implementation of the Java code on-

218

the-fly. This is possible when we consider the JVM to be
an abstraction for the underlying hardware (Figure 2). The
JVM can now intercept method calls for which a hardware
equivalent is available, and delegate execution to the appro-
priate accelerator. It also enables the accelerator to access
objects on the Java heap which is distributed between both
main memory and the accelerator’s local memory.

In this concept, the hardware is an integral part of the
JVM but is invisible to the Java application. Therefore we
need to properly define an equivalence between the hardware
component and software concepts in the Java language. In
our approach, hardware accelerators encapsulate the func-
tional behaviour of the bytecode in the corresponding Java
method. This accelerator is considered stateless. At each in-
vocation, both the parameters of the function and the cor-
responding state —the class for static methods, an object
reference for virtual methods— need to be transferred to
the hardware component.

2.3 Shared-memory model

Our hybrid architecture uses a shared-memory model that
allows both the host processor and the accelerator to access
all objects. The Java heap is distributed between main mem-
ory and the accelerator’s local memory. The garbage collec-
tor is extended to account for objects and references in both
memories. Whether new objects are placed in main memory
or in the accelerator’s local memory, should depend on their
access pattern. This is exactly the focus of our algorithm
for communication-aware data placement which is described
in Section 3. Although object-oriented languages like Java
strongly emphasize the connection between the object’s data
and its functionality (methods), in our approach the deci-
sions on data and method placement are treated separately.
Indeed, a single object class may have some methods imple-
mented on the accelerator while others are executed by the
host processor.

Throughout this paper, we assume that, if the processor
caches its accesses to main memory, coherence is in some
way maintained when the accelerator writes to an object in
main memory, for instance using a coherent HyperTransport
bus. During our communication measurements, we assumed
that no caching of remote accesses is performed; by the ac-
celerator to main memory or by the host processor to the ac-
celerator’s local memory. Since FPGAs have no local cache,
this is usually the case on our target platform. On imple-
mentations that do support remote caching, we overestimate
the communication, by an amount proportional to the hit
rate of remote accesses in the cache. Still, optimising the
object placement will reduce the communication overhead
and may reduce cache requirements for remote addresses.

3. STRATEGIES FOR DATA PLACEMENT

Objects should be placed close to the component (host
processor or hardware accelerator) that references them the
most. This way a large fraction of memory accesses will
be local, minimising communication and its associated cost.
Finding the optimal placement at runtime is infeasible for
two reasons. First, we don’t know the future usage pattern
of newly created objects, so we have to base our decision on
other information such as profiles, previous usage of other
objects ... Second, there are too many objects to keep track
of these statistics on a per-object basis. Therefore, we take
the placement decision clustered per creation site. This is

the line in the source code where the objects are created.

Objects created at the same creation site are expected to
have a similar usage pattern. Therefore, we can allocate
them in the same memory, and have a performance close to
that of optimally allocating each object individually. More-
over, we can use measured access patterns of previous ob-
jects with the same creation site to determine the optimal al-
location site for new objects. These previous access patterns
can be measured either on-the-fly using runtime instrumen-
tation or during a separate profiling phase. Some software
patterns can break the general rule that creation site and
usage patterns are closely related. For example, in class fac-
tories a single creation site creates objects of different types
which can be used in very different contexts. However, as
will be evident in Section 4, for the objects causing most of
the remote accesses the connection between the creation site
and the usage patterns turns out to be strong.

We will compare several algorithms for communication-
aware object placement: a baseline algorithm, optimal place-
ment, local allocation and self-learning allocation. These al-
gorithms differ in implementation complexity, and whether
the allocation site is adaptive or fixed and whether it is based
on runtime or profile information.

Baseline algorithm.

This algorithm allocates all objects in main memory. No
account is taken of the hybrid nature of our architecture,
and all memory accesses performed by the accelerator will
be remote accesses. Therefore the communication cost will
be high although for some benchmarks (Section 4) the differ-
ence is acceptable. Implementation complexity is very low
since essentially no decision has to be made. The runtime
overhead of this strategy is zero.

Optimal placement.

Based on the joint usage pattern for all objects with the
same creation site and measured during a complete run of
an application, the optimal memory per creation site can be
determined. Although this strategy is not ‘really optimal’
because it does not consider each object individually, we
consider it as an ‘optimal’ implementation within the given
constraints and use it to compare all the other strategies.
The runtime overhead of this strategy is low, although a
separate profiling phase is needed which can be inaccurate
due to input-dependent behavior.

Local allocation.

Many objects are allocated on the stack or have a very
short lifetime. They are therefore often used almost exclu-
sively by the method which created them. This observation
leads to the local allocation strategy which allocates all ob-
jects in memory closest to the component that creates them.
The information needed to implement this strategy is easily
available at runtime, implementation of local allocation is
thus straightforward and incurs no runtime overhead nor a
separate profiling phase.

Self-learning allocation.

In this strategy, the virtual machine decides at runtime
where to allocate objects based on the usage patterns of
previous objects. This is particularly useful in the dynamic
environment of a hardware accelerated JVM, which decides

219

antir —ET

chart

fop :
hsqldb ‘
jython ‘

luindex

lusearch

pmd
bloat

xalan

0% 20%

M@ baseline

40% 60%
O self learning Olocal allocation

80%
Ooptimum

100%

Figure 3: Remote access ratio comparison of four al-
location strategies for all benchmarks assuming the
ten hottest methods are executed by hardware ac-
celerators.

at runtime whether to execute functionality on the general-
purpose processor or on specific hardware accelerators. The
JVM continuously counts all memory accesses from both the
main processor and the accelerators to each object in both
memories. This can for instance be done through (sampled)
instrumentation or hardware assisted profiling. Each cre-
ation site has its own set of counters, one for the processor
and one for the accelerator, each aggregating the number
of accesses to objects created at this site. At each point in
time, comparing the two counters will tell us which system
component has accessed these objects the most up to now.
New objects created at this creation site will be allocated
in the memory closest to the component with the highest
number of accesses. At the end of the program the counters
will reach the value obtained during the profiling for optimal
placement (assuming a constant input set). The behaviour
of the self-learning algorithm will therefore converge towards
the optimal placement. The rate of convergence is usually
very fast, as shown in Section 4, resulting in a near-optimal
remote access ratio.

4. EXPERIMENTAL RESULTS

For the evaluation of the techniques for data placement,
we use the DaCapo benchmark suite [1], a famous suite for
Java benchmarking that generates memory-intensive work-
loads. In an initial profiling run, we determine for each
benchmark the ten hottest methods, i.e. those accounting
for the largest execution time. For all our experiments, we
assume that hardware-accelerated execution is used for each
of these ten hottest methods.

4.1 Comparison of remote access ratios

Our first experiment is a global comparison of all four
strategies for data placement over all benchmarks. We run
the benchmark and instrument all memory accesses. Based
on this measurement we then calculate the number of remote
and local memory accesses during the complete run of the
benchmark.

Figure 3 shows the remote access ratio for all four alloca-
tion strategies on the DaCapo benchmarks. Both the self-
learning and the local allocation strategy reduce the remote
access ratio significantly: the baseline approach suffers from
56% costly remote accesses on average, with local allocation
this is reduced to 41%. Self-learning reduces the remote ac-

bloat

“in Annman, ‘ 'I'I

hsqldb

I

100% 100%

50% 50%

0%

0%

0 16 512 16384 never 0 16 512 16384 never
jython luindex
ook o 100% - —
50% { 50% {
0% Y Y Y = 0% Y ¥ 1 8
0 16 512 16384 never 0 16 512 16384 never

Figure 4: The self-learning strategy usually con-
verges quickly.

cesses further to 28%. In the theoretical optimal case, when
every object is allocated in the most suitable memory region,
11% of all memory accesses is a remote access.

The self-learning strategy can always reduce the communi-
cation cost compared to the baseline implementation, and,
except for benchmarks bloat and xalan, performs better
than local allocation. For xalan the difference between lo-
cal allocation and the self-learning strategy is limited. In
benchmark bloat lots of objects are allocated by the ac-
celerated methods at the start of the program, before the
self-learning algorithm can learn that these objects will be
referenced more by the accelerator than the processor. This
explains why the remote accesses ratio of self-learning for
bloat is very close to the baseline approach.

4.2 Self-learning: how fast can it learn?

In a second experiment we measured the convergence of
the self-learning allocation strategy. This strategy places
objects close to where they were referenced the most in the
past. After a sufficient length of time, this algorithm con-
verges to the final (and optimal) allocation site.

For each creation site in each benchmark, we counted how
many objects were created before the algorithm has con-
verged. We clustered these creation sites according to this
number of wrongly placed objects and weighted them by the
total fraction of objects they represent. Figure 4 shows the
resulting histograms and the cumulative curve for a repre-
sentative selection of benchmarks. For example, in jython
the optimal allocation site for 76% of the objects was main
memory. Since the self-learning algorithm defaults here,
these objects are allocated correctly from the start of the
program. In Figure 4 this is shown as a bar of 76% at zero:
for these creation sites zero objects are allocated incorrectly.

The behaviour of benchmark hsqldb is more complicated.
Here, main memory is the optimal allocation site for only
18% of all objects. For other creation sites, the first object
is placed in main memory but it is subsequently accessed
more by the accelerator. Therefore the self-learning strategy
allocates the second object in the accelerator’s local memory.
If the accelerator remains responsible for the majority of
accesses to these objects, then the self-learning strategy will
correctly place all subsequent objects in the accelerator’s
local memory —so in this case only the first object of each
site was allocated incorrectly. For hsqldb these creation sites

220

amount to 13% of all objects, as visible in the bar at one
in Figure 4. At other creation sites, more than one object

was allocated before accesses from one component clearly
outnumber accesses from the other component. Finally, the
last bar in the histogram shows that creation sites that never
converge towards the optimal location amount to 10% of all
objects in hsqldb.

In general we can conclude that the self-learning algorithm
converges quickly. The fraction of objects allocated at cre-
ation sites for which the algorithm never converges, is never
more than 10%.

S. CONCLUSIONS

Although application-specific hardware accelerators can
significantly improve the performance of JVMs, communi-
cation cost often limits the speedup obtained in practice.
In our hybrid architecture this cost is caused by the non-
uniformity of access times to the distributed heap memory,
formed by main memory and local memory of the accelera-
tor. We propose several techniques that can find the optimal
location for each Java object’s data and thereby reduce the
communication by up to 86% for the DaCapo benchmarks.

6. REFERENCES

[1] S. M. Blackburn et al. The DaCapo benchmarks: Java
benchmarking development and analysis. In
Proceedings of OOPSLA, pages 169-190, Oct. 2006.
A. Borg, R. Gao, and N. Audsley. A co-design
strategy for embedded Java applications based on a
hardware interface with invocation semantics. In
Proceedings of JTRES, pages 5867, 2006.

E. A. Hakkennes and S. Vassiliadis. Multimedia
execution hardware accelerator. Journal of VLSI
signal processing systems for signal image and video
technology, 28(3):221-234, 2001.

R. Helaihel and K. Olukotun. Java as a specification
language for hardware/software systems. In
Proceedings of ICCAD, pages 690-697, 1997.

E. Lattanzi et al. Improving Java performance using
dynamic method migration on FPGAs. International
Journal of Embedded Systems, 1(3):228-236, 2005.

R. Lysecky, G. Stitt, and F. Vahid. WARP processors.
Transactions on Design Automation of Electronic
Systems, 11(3):659-681, July 2006.

R. P. Maddimsetty et al. Accelerator design for
protein sequence HMM search. In Proceedings of 1CS,
pages 288-296, 2006.

E. M. Panainte, K. Bertels, and S. Vassiliadis. The
MOLEN compiler for reconfigurable processors. Trans.
on Embedded Computing Sys., 6(1):6, 2007.

C. Porthouse. Jazelle for execution environments.
ARM Whitepaper, available online, May 2005.

M. Schoeberl. A Java processor architecture for
embedded real-time systems. J. Syst. Archit.,
54(1-2):265-286, 2008.

S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte. The MOLEN
polymorphic processor. IEEE Trans. on Computers,
53(11):1363-1375, 2004.

2]

3]

[4]

[5]

[6]

[7]

[9]

(10]

(11]

