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Abstract − Time domain magnetic field integral equation (MFIE) is discretized using divergence-

conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial 

basis and testing functions, respectively. The resulting mixed discretization scheme, unlike the classical 

scheme which uses RWG functions as both basis and testing functions, is “proper”: Testing functions belong 

to dual space of the basis functions. Numerical results demonstrate that the marching on-in-time (MOT) 

solution of the mixed discretized MFIE yields more accurate results than that of classically discretized MFIE. 

1 INTRODUCTION 

Magnetic field integral equation (MFIE) is a second kind integral equation, i.e., it is constructed as a 

summation of an identity and a linear operator. Because of the identity operator, the domain and range of the 

MFIE operator are identical and a consistent discretization scheme should use basis and testing functions, 

which belong to dual spaces of each other [1]. In particular, the testing function should be in the dual space of 

the MFIE operator’s range (and domain) to obtain a “proper” discretization scheme. Classical marching on-in-

time (MOT) based MFIE solvers expand the unknown surface current density using divergence-conforming 

Rao-Wilton-Glisson (RWG) functions [2] in space and polynomial functions in time. To obtain a proper 

discretization, spatial testing should be done using curl-conforming   n̂× RWG functions, which belong to dual 

space of the divergence conforming RWG basis functions. However, resulting MOT matrix becomes singular 

and cannot be inverted accurately at every time step as required by the MOT scheme. Therefore, classical 

implementations use RWG functions (but not their duals) for spatial testing and violates the requirement of 

the proper discretization described above. Even though the solution of the MOT matrix system resulting from 

this discretization scheme converges fast, it yields inaccurate results. 

In this work, time domain MFIE is discretized using the mixed discretization scheme, which is originally 

proposed for discretizing the frequency domain MFIE [3]. Mixed discretization scheme makes use of recently 

proposed Buffa-Christiansen (BC) functions [4]-[5] to produce well-conditioned MOT matrices without 

violating the requirement of the proper discretization described above. Current density is expanded using 

divergence-conforming RWG functions in space and spatial testing is carried out using curl-conforming 

  n̂× BC functions, which belong to dual space of the divergence-conforming RWG functions.  
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Numerical results demonstrate that the MOT solution of the mixed discretized MFIE yields more accurate 

results than that of the classically discretized MFIE, as expected. 

2 MAGNETIC FIELD INTEGRAL EQUATION 

Time domain MFIE, which is obtained by enforcing the magnetic field boundary condition on perfect 

electrically conductor (PEC) scatterer surfaces, reads 

  

   

n̂(r)× Hinc (r,t) = 1
2

J(r,t)

    − n̂(r)×∇× J( ′r ,t)∗δ (t − R / c)
4πR

d ′r
S∫

,   r ∈S .  (1) 

Here,  S  denotes the scatter surface,    H
inc (r,t)  is the (essentially) band-limited incident magnetic field,    J(r,t)  

is unknown current density, 
  
R = r − ′r  is the distance between the source point  ′r  and the observation point 

 r ,   n̂(r)  is the outward-pointing unit normal vector defined at  r ,  c  is the speed of light in the medium, where 

 S  resides,  ∗  denotes the temporal convolution operation, and  δ (.)  is the Dirac delta function. To 

numerically solve (1) for the unknown current density    J(r,t) , MOT scheme expands    J(r,t)  in terms of 

temporal and spatial basis functions: 

 
   
J(r,t) = In,iTi (t)bn(r)

i=1

Nt∑n=1

N∑   (2) 

In (2),    fn(r)  denotes the nth spatial basis function, which is chosen as the RWG basis function,   Ti (t)  is the ith 

temporal basis function, which is chosen as the shifted polynomial Lagrange interpolation function, and 
  
In,i  is 

the unknown coefficient associated with the nth spatial and ith temporal basis function. Here,  N  and  Nt  are 

numbers of spatial basis functions and time steps, respectively. Substituting (2) in (1) and testing the resulting 

equation with testing functions    tm(r) ,   m = 1,.., N , in space and 
  
δ (t − t j ) ,   j = 1,.., Nt  in time, yield the linear 

MOT system:  

   

   

tm(r) ⋅ n̂(r)× Hinc (r,t j )dr
Sm
∫ =

           In,i

1
2

tm(r) ⋅Ti (t j )fn(r)dr
Sm
∫

⎧
⎨
⎩i=1

j∑n=1

N∑ − tm(r) ⋅ n̂(r)× Ti (t j )∗Hn(r,t j )⎡⎣ ⎤⎦dr
Sm
∫ }.

   (3) 

Here, 
 
t j = jΔt  and  Δt  is the time step size and    Hn(r,t)  is the magnetic field due to impulsively excited RWG 

basis function. It should be noted here that    Hn(r,t)  is evaluated analytically as described in [6]-[8];    Hn(r,t)  

does not have any spatial singularities, therefore there is no need for a singularity treatment scheme to 

enhance accuracy of the resulting matrix elements. Additionally, for polynomial   Ti (t) , temporal convolution 

in (3) can be evaluated in analytically [6]-[8]. 



The choice of testing basis function    tm(r)  determines type of the discretization strategy as described next in 

Section 2.1 and 2.2, and one of factors that determine the accuracy of the solution as demonstrated by the 

numerical results presented in Section 3. 

2.1  Classical Discretization Strategy 

Classical Galerkin discretization strategy uses divergence-conforming RWG functions for spatial testing, i.e., 

   tm(r) = fm(r)  in (3), where    fm(r)  denotes the mth RWG function. Even though the Gram matrix [first term on 

the right hand side of (3)] resulting from this type of discretization is well-conditioned, this discretization 

scheme is not proper: Testing and basis functions belong to the same function space; see Section 1 for a brief 

explanation and see [3] for more details. 

2.2  Mixed Discretization Strategy 

Mixed discretization strategy uses curl-conforming rotated BC functions for spatial testing, i.e.,  

   tm(r) = n̂(r)× gm(r)  in (3), where    gm(r)  denotes the mth BC function. After several mathematical 

manipulations, (3) can be rewritten as 

 

   

gm(r) ⋅Hinc (r,t j )dr
Sm
∫ =

  In,i

1
2

n̂(r)× gm(r)⎡⎣ ⎤⎦ ⋅Ti (t j )fn(r)dr
Sm
∫

⎧
⎨
⎩i=1

j∑n=1

N∑ − gm(r) ⋅∇ × Ti (t j )∗Hn(r,t j )⎡⎣ ⎤⎦dr
Sm
∫ }.

  (4) 

It should be noted here that    n̂(r)× gm(r)  belong to the dual space of    fn(r) .    gm(r)  are defined on the 

barycentric refinement of the initial mesh, where    fn(r)  are constructed; additionally they are linear 

combinations of RWG functions constructed on the barycentric mesh [9]-[10]. MOT system (4) can easily be 

implemented using existing codes that can account for (3) with RWG functions defined on the barycentric 

mesh.  

Mixed discretization scheme satisfies the proper discretization condition (see Section 1 for a brief 

explanation and see [3] for more details) and generates a more accurate MOT system as shown by the 

numerical results presented in the next section. 

3 NUMERICAL RESULTS 

To demonstrate that the mixed discretization scheme produces more accurate MOT systems than the classical 

scheme, transient scattering from a unit sphere residing in free space is investigated. The sphere is discretized 

with 720 triangular patches. The excitation is chosen as modulated Gaussian plane wave propagating in   − ẑ  

direction: 

    
Hinc (r,t) = −ŷcos 2π f0(t − tp + r ⋅ ẑ / c)⎡⎣ ⎤⎦e

−
(t−tp+r⋅ẑ/c)2

2σ 2

 
(5) 



where   f0 = 75 MHz  is the modulation frequency,   fbw = 30 MHz  is the effective bandwidth,   σ = 7 / (2π fbw )  is 

a measure of pulse duration, and 
  
tp = 3.5σ  is the delay. Time step size is chosen as   Δt = 0.1/ ( f0 + fbw ) . Third 

order polynomial Lagrange interpolation function is used as   Ti (t) . Both MOT systems in (3) and (4) are 

solved for   Nt = 2000  time steps. Figure 1 plots the coefficients of the 1st RWG basis function, which are 

obtained by solving (3) and (4). Figure 2 plots the relative norm error in the radar cross section (RCS) with 

respect to Mie series solution. The error is computed using  

   

err RCS ( f
j
) =

σ
time

( f
j
,θ

m
,φ) −σ

Mie
( f

j
,θ

m
,φ)

m=1

Nθ∑
2

σ
Mie

( f
j
,θ

m
,φ)

m=1

Nθ∑
2

.

 

(6) 

Here,   Nθ = 181 ,   θm = (m−1) ,  φ = 0 , 
  
f j = j180  kHz, and 

  
σ time( f j ,θm ,φ)  and 

  
σ Mie( f j ,θm ,φ)  are RCS samples 

obtained at these points by Fourier transforming the time-domain MOT results and the Mie series solution, 

respectively. Figure 2 clearly demonstrates the superior accuracy of the mixed discretization scheme. 
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Figure 1:  Coefficients of the 1st RWG basis function obtained by solving the MOT systems (3) and (4). 

 

Figure 2:   err RCS ( f )  obtained from solutions of the MOT systems in (3) and (4). 

 


