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Abstract   Single parameter formulations have shown to be insufficient to describe constraint effects in 
fracture mechanics specimens. This has lead researchers to a two parameter approach like the J-Q theory. 
In order to investigate constraint effects, the authors have developed a generic finite element model. Prior 
to drawing conclusions this model must first be validated, which is the topic of this paper. This validation 
has been done by comparing analytical expressions of the J-integral with those obtained from the 
performed simulations. The compared geometries were center cracked tension (CCT) and double edge 
notched tension (DENT) fracture mechanics specimens. The results showed good agreement with the 
analytical expressions and, as such, the model can now be confidently applied to determine values of the J-
integral. This is a first step towards evaluating two parameter J-Q constraint.  
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1 INTRODUCTION  

In small scale yielding conditions, a single crack driving force parameter (e.g. K, J or CTOD) is sufficient to 
accurately describe crack tip conditions and as such can be used as a geometry independent fracture 
criterion. Under large scale yielding conditions, a single parameter is however inadequate. Such condition 
is no longer geometry independent and therefore another approach is needed. Two parameter fracture 
mechanics (e.g. T-stress, J-Q theory) offers a solution to this problem. These two parameter approaches 
allow characterising the different levels of constraint seen in fracture mechanics specimens of different 
geometries. To study these influences the authors have designed a finite element model. To be able to 
draw valid conclusions from the simulations a model validation imposes itself.  

This paper provides a model validation by comparing its simulated J-integral values with those obtained 
from published analytical solutions. This is done for both center cracked tension (CCT) and double edge 
notched tension (DENT) specimen geometries. These geometries are commonly reported in literature and 
illustrated in Figure 1. Figure 1 also shows the definition of the used geometric parameters: specimen 
length L, thickness B, width 2W and crack depth a. These parameters lead to a number of non-dimensional 
groups: a/W, L/W and B/2W. The relative length L/W will be kept at a constant value of 10 in all analyses for 
both CCT and DENT, whilst the relative thickness B/2W will be varied and the relative crack depth a/W shall 

be studied for three discrete values of 0.25, 0.50 and 0.75. 

The choice for CCT and DENT geometries was influenced by the availability of analytical expressions and 
their significance in literature and experimental work. This choice also allows comparing relatively low 
constraint conditions in the CCT specimen versus the relatively high constraint in a deeply cracked DENT 
specimen [1].  

In literature DENT specimens for example have been used for creep-fatigue tests, tests on metal foams, 
asphalt binders and polymers [2]. DENT tests are also performed to determine the specific essential work 
of fracture [3]. A CCT specimen on the other hand is commonly used for the validation of finite element 
models because of its known analytical solutions [4-6], and in creep crack growth testing [7]. 

Sometimes side grooves are added to fracture mechanics specimens. The intention of these side grooves 
is to reduce the tunnelling effect that is often seen during crack growth. Tunneling causes difficulties to 
unambiguously determine and quantify the crack extension as it is no longer uniform across the specimen 
thickness. Side grooves also ensure crack growth along a straight path, which might be necessary to 
achieve accurate measurements depending on the instrumentation used. In [7] a thickness reduction of 
20% is suggested for both CCT and DENT. Side grooves are less often employed for CCT specimens and 
some authors even disadvise them [8]. 
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Figure 1. a) Center cracked tension (CCT)  and b) double edge notched tension (DENT) geometries 
(location sidegrooves indicated with dashed line) 

2 FINITE ELEMENT MODEL 

The finite element model was designed for rectangular geometries in which a notch is present. The model 
was written in Pythoncode for ABAQUS

®
 (version 6.10). The Pythoncode represents a fully parametric 

script, which allows the user to easily modify the dimensions of the evaluated specimen and the applied 
notch depth without having to use the graphic user interface. The script also enables the use of different 
test specimens and allows changing mesh parameters. Adding side grooves is another possibility which is 
implemented through a nodal coordinate transformation of the meshed geometry. The generic model uses 
default a single edge notched tension (SENT) specimen as a basis. This base geometry can be mirrored, 
by applying an appropriate boundary condition, to achieve the DENT or the CCT specimen geometry. By 
mirroring about the plane opposite to the notch, a DENT specimen is found. This is demonstrated in Figure 
2 wherein a DENT geometry is achieved by mirroring the SENT geometry about the YZ plane. One can 
also deduce from the figure that the SENT geometry itself is produced by mirroring half of the SENT 
geometry about the XZ plane. By doing so only a quarter of the 3D geometry needs to be analysed, thus 
significantly reducing processing time without sacrificing accuracy. CCT geometries are analysed in a 
similar way, by mirroring the SENT geometry about the notched plane.   

In addition to 3D calculations, the script also offers the option to conduct a 3D plane strain analysis. This is 
achieved by applying an extra symmetry boundary condition at the outer plane of the model, parallel to the 
XZ plane in Figure 2.  

 

Figure 2. Mirroring about the XZ and YZ or notched plane allows DENT or CCT geometry 

notch 



2.1 Boundary conditions at the end planes 

The finite element model allows for two different types of boundary conditions. The first setting is where the 
specimens are clamped at their end planes to administer the tensile force. This boundary condition is 
achieved by applying a constant displacement on one of the end planes (perpendicular to the length, z-axis, 
keeping the other degrees of freedom fixed) while all degrees of freedom at the other end plane are fixed. 
The second setting is where the specimen is loaded under tension by being pinned. This allows for small 
rotations of the specimen. This boundary condition was simulated by the use of a multipoint constraint 
(MPC) on the end planes of the specimens. In both conditions a displacement is applied instead of a load, 
which facilitates numerical convergence. 

2.2 Mesh parameters 

The mesh mostly consists of coarse bricks with a rectangular shape, except for the region close to the 
crack tip as can be seen in Figure 3b. At the crack tip the mesh assumes a spider web like pattern, which is 
composed of smaller elements. These smaller elements improve the accuracy of the calculations of the 
high stress and strain field gradients at the crack tip. This pattern can be discerned in Figure 3c. The 
amount of elements has been chosen carefully to balance the increase in calculation time and the higher 
accuracy of the calculation that come with a larger amount of elements. First order linear elements with 
reduced integration were used (type C3D8R in ABAQUS

®
). 
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Figure 3. a) Global view of the mesh for a half SENT specimen with side grooves, b) Detail of crack area 
with side grooves, c) Spider web mesh at the crack tip 

 

2.3 Material definition 

The material model used for the finite element and analytical calculations, was a Ramberg-Osgood type 
steel. The stress-strain relation can be found in equation (1).  

 
  

 

 
  

  
 

 
 

  
 
 

 (1)  

The yield strength σ0 is 420 MPa and the Young’s modulus equals 210000 MPa. For a nominal yield offset 

( 
  

 
) of 0.002 (which implies that σ0 represents the 0.2% proof stress), the value of α is equal to 1. The 

strain hardening coefficient n was chosen to be 10 to account for the steel types which were commonly 
used at the time these analytical formulas were composed (1981). A small strain analysis was performed, 
assuming isotropic hardening according to the Von Mises yield criterion. 

2.4 Post-processing 

In the post-processing stage of the analysis values for the J-integral are determined at the symmetry plane 
of the SENT geometry (XZ plane in Figure 2). Reaction forces at the MPC’s are determined as well and 
doubled due to symmetry, thus yielding a J versus applied load curve. Load versus crack mouth opening 
displacement (CMOD) curves can also be constructed, as the CMOD value is also extracted during post-
processing.  

 



3 ANALYTICAL FRAMEWORK 

Analytical crack driving force solutions have been used to validate the model. These solutions have been 
found in the EPRI handbook (Kumar et al. [9]) and from Lei et al. [10] and Faucher [11]. Different solutions 
are available for plane strain and plane stress. The comparison of the finite element simulations and the 
analytical solutions relies on the proper calculation of elastic and plastic J-integral, to obtain the total J-
integral: 

           (2)  

The elastic part is calculated from the stress intensity factor KI, which can be found in tabulated form as a 
function of the (normalized) crack depth [12]. P is the applied tensile force. 
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 (4)  

E’ is the modified Young’s modulus, equal to E for plane stress and E/(1-ν
2
) for plane strain (ν is Poisson’s 

ratio). The plastic part of the J-integral is also dependent on plane strain or plane stress conditions, and has 
been calculated according to the formulation of the EPRI handbook [9] (Eq. 5). The difference in calculation 
between plane strain and plane stress lies in different tabulated values of the function h1 and the use of a 
different reference load P0. The function h1 is dependent on the crack depth and the strain hardening 
coefficient. Besides the different values of h1 and P0, the equation for Jpl is the same for plane strain and 
plane stress. 

 
         

  

 
   

 

 
    

 

  
 
   

 (5)  

In which b is half the length of the unnotched ligament for both specimen geometries. P0 is the reference 
load and is defined as follows.  

For CCT specimens: 

Plane strain 
   

 

  
     (6)  

Plane stress          (7)  

For DENT specimens: 

Plane strain 
             

 

 
      (8)  

Plane stress 
   

 

  
     (9)  

The tabulated values for f and h1 are given for a normalized crack depth of 0.125 to 0.875 and a strain 
hardening coefficient of 1 to 20. 

The elastic component of the J-integral for the equations of Lei et al. and Faucher corresponds with the one 
calculated using the formulas of Kumar (Eq. (4)). The difference lies in the method to calculate the plastic 
part of the J-integral. Lei et al. calculate the area between the load vs. CMOD curve and the secant offset 
line, Apδ, as shown in Figure 4. The equations by Faucher use the applied displacement (alternatively 
termed load line displacement or LLD) instead of the CMOD. This should approximate the value of the 
displacement due to plasticity at the crack zone. However, due to the high specimen length used in the 
simulations, the LLD is no longer representative for the plastic displacement at the crack as the contribution 
of linear elastic global specimen deformation becomes pronounced. This is especially the case for shallow 
cracks as plasticity is not only limited to the cross-section at the crack tip. Therefore, it was decided to use 
CMOD in an attempt to overcome this anomaly. 



 

Figure 4. Definition of the area Apδ by Lei et al. [10] 

 
       

   

      
 (10)  

The factor ηpδ is dependent on the strain hardening coefficient and the value of a/W. Values for CCT and 
DENT specimen geometries can be found for both plane stress and plane strain conditions (Faucher). Lei 
only has an ηpδ factor for CCT under plane strain conditions. The ηpδ factor is tabulated for specimens with a 
normalized crack depth of 0.125 to 0.875 and for a strain hardening coefficient of 2 to 20. 

4 RESULTS 

For both the CCT and DENT geometries, 3D and plane strain simulation results were compared to the 
analytical solutions. The thickness-width ratio B/W and the relative crack depth a/W were varied for both 
specimen geometries.  

4.1 Center cracked tension (CCT) 

The B/W ratio was varied between 0.1 and 1 for the 3D simulations and the plane strain simulations. 3D 
simulations were performed for a/W ratios of 0.25, 0.50 and 0.75. In Figure 5 an example of a typical CDF-
curve of a CCT specimen is shown for a relative crack depth a/W of 0.75. Both the plane strain and plane 
stress analytical solutions according to the EPRI handbook are also shown in the figure as are the solutions 
by Faucher and Lei. The applied tensile force P has been normalized by the reference load P0 of the plane 
stress condition (Kumar) to attain a more geometry independent result.  

  

a) b) 

Figure 5. 3D simulation CCT a) B/W=1, a/W=0.75. b) B/W=0.1 , a/W=0.75. 

For the 3D simulations with B/W = 0.1 the CDF-curve almost coincides with the analytical solution for a 
plane stress condition. This was expected because a CCT specimen is known to closely approach the 
theoretical plane stress behaviour for low B/W values [13]. This is a good indication of the validity of the 
finite element model. The use of CMOD instead of LLD for the equations of Lei and Faucher is justified as it 
gives accurate results as can be seen in Figure 5. 
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To further justify the use of this model, the difference of the 3D simulation to the analytical solution for plane 
stress is calculated for different B/W ratio’s. This is done by integrating the area between the normalized 

CDF curves of the simulation and the analytical solution for plane stress. The range of the integration is 
limited to an upper value of 1000 N/mm for the J-integral. Most experimental results for the J-integral are 
beneath this value. The resulting area is then divided by the area beneath the simulation curve. This allows 
to objectively quantify the discrepancy between both curves. The integration is done numerically with 
Simpson’s rule. The difference between the simulation and the analytical result should decrease for lower 
B/W ratios. A thinner CCT specimen should approach the plane stress behaviour as the thickness is 
reduced. The differences are given in Table 1 to Table 3 as a function of the B/W ratio. 

 

Table 1. Difference between 3D simulations and the analytical solutions for a/W=0.25 (CCT) 

B/W Difference plane 
stress (%) 

Difference plane 
strain (%) 

Difference 
Lei (%) 

Kumar Faucher Kumar Faucher 

1.000  136.11 24.70 48.09 30.14 16.23 

0.800 100.43 22.29 55.17 27.54 16.75 

0.600 66.56 18.44 61.52 22.95 16.08 

0.400 32.50 21.63 67.71 24.59 19.86 

0.200 3.96 17.53 71.27 18.99 15.95 

0.100 12.46 12.30 70.01 11.98 11.54 

 

Table 2. Difference between 3D simulations and the analytical solutions for a/W=0.50 (CCT) 

B/W Difference plane 
stress (%) 

Difference plane 
strain (%) 

Difference 
Lei (%) 

Kumar Faucher Kumar Faucher 

1.000 151.21 11.88 41.7 11.57 12.13 

0.800 113.48 12.27 48.78 11.99 7.45 

0.600  92.73 33.74 53.83 33.56 44.95 

0.400 56.52 27.53 60.23 27.13 33.34 

0.200 13.50 26.90 66.62 26.29 27.61 

0.100 9.17 19.01 66.42 18.17 16.33 

 

Table 3. Difference between 3D simulations and the analytical solutions for a/W=0.75 (CCT) 

B/W Difference plane 
stress (%) 

Difference plane 
strain (%) 

Difference 
Lei (%) 

Kumar Faucher Kumar Faucher 

1.000  256.43 8.22 42.17 10.24 14.70 

0.800 202.99 11.97 49.72 11.68 13.03 

0.600 175.02 32.82 54.43 32.80 47.03 

0.400 117.05 27.64 62.05 27.40 39.72 

0.200 44.82 37.27 69.93 36.74 46.44 

0.100 5.01 28.15 72.11 27.31 30.08 

 



The finite element and the analytical solutions by Kumar for plane stress converge towards each other as 
the B/W ratio decreases, as is expected. The solution for plane strain on the other hand diverges from the 
3D simultation. This further indicates the validity of the finite element model as the solutions composed by 
Kumar are purely analytical and are both limiting cases. The solutions by Lei and Faucher are more  
accurate analytical solutions because of the method used to calculate the plastic part of the J-integral. For 
that reason the solutions of Faucher and Lei closely resemble the simulated values as can be seen in the 
Tables 1 to 3 and Figure 5. 

The value of the difference between 3D simulations and the analytical formula for plane stress according to 
Kumar for a specimen with B/W=0.1 and a/W=0.25 increases again with respect to the configuration 
B/W=0.2. This is caused by the intersecting of the simulations with the analytical curve for B/W=0.2 at higher 
loads and the simulation curve for B/W=0.1 lying slightly under the analytical curve. The difference for 
B/W=0.1 is therefore higher than for B/W=0.2 although the results approach the analytical values better. 
This problem is inherent of the method used to compare the finite element values to the analytical ones. 

The discrepancy between the simulated plane strain values and the calculated theoretical values are given 
in Table 4. A performant finite element model should only allow little difference between the simulated 
values and the analytical solutions for plane strain conditions. 

Table 4. Difference between plane strain simulations and the analytical plane strain solution (CCT) 

B/W Difference plane 
strain (%) 

Difference 
Lei (%) 

Kumar Faucher 

1.000 5.05 10.75 7.47 

0.800 3.75 11.96 8.17 

0.600 4.49 19.17 29.03 

0.400 4.32 22.65 31.37 

0.200 6.35 17.38 24.69 

0.100 9.86 12.46 18.53 

 

The differences between the finite element and the analytical values are small as can be seen in Figure 6. 
The value of the difference seems high, but that is caused by the length over which the curves are 
integrated.  

 

Figure 6. Plane strain simulation CCT, B/W=0.4 , a/W=0.25 
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4.2 Double edge notched tension 

For the DENT specimen geometry, the same a/W, B/W and L/W ratios were used as for the CCT specimen. 

The results can be seen in Table 5 to Table 7. The same trends as for the CCT specimens can be 
discerned in the tables and are shown in Figure 7 for two B/W values. 

Table 5. Difference between 3D simulations and the analytical solutions for a/W=0.25 (DENT) 

B/W Difference plane stress 
(%) 

Difference plane strain 
(%) 

Kumar Faucher Kumar Faucher 

1.000  88.66 14.70 68.87 20.64 

0.800 47.33 23.08 72.02 27.11 

0.600 28.47 22.88 76.67 27.91 

0.400 11.11 21.19 78.15 26.15 

0.200 12.82 21.36 78.31 26.40 

0.100 26.59 21.04 75.57 25.25 

 

Table 6. Difference between 3D simulations and the analytical solutions for a/W=0.50 (DENT) 

B/W Difference plane stress 
(%) 

Difference plane 
strain (%) 

Kumar Faucher Kumar Faucher 

1.000 245.77 13.17 73.84 35.94 

0.800 172.14 13.34 77.11 35.99 

0.600 112.78 19.55 81.07 37.80 

0.400 51.96 21.33 82.73 39.74 

0.200 9.38 27.34 80.67 38.88 

0.100 8.97 17.06 74.04 35.86 

 

Table 7. Difference between 3D simulations and the analytical solutions for a/W=0.75 (DENT) 

B/W Difference plane stress 
(%) 

Difference plane 
strain (%) 

Kumar Faucher Kumar Faucher 

1.000 2691.18 17.98 73.39 33.45 

0.800 1833.96 16.64 79.07 34.60 

0.600 1051.54 17.27 85.07 37.51 

0.400 366.16 20.26 87.98 39.83 

0.200 84.55 43.99 85.48 44.45 

0.100 20.74 19.63 78.81 37.23 

 



  

a) b) 

Figure 7. 3D simulation DENT a) B/W=1, a/W=0.75. b) B/W=0.1 , a/W=0.75 

In Table 8 the difference between a plane strain simulation and the analytical results can be seen. The 
simulations approach the analytical plane strain solutions by Kumar as can be seen in Figure 8. 

Table 8. Difference between plane strain simulations and the analytical plane strain solution (DENT) 

B/W Difference plane strain 
(%) 

Kumar Faucher 

1.000 19.00 14.23 

0.800 19.51 13.41 

0.600 16.66 19.00 

0.400 21.18 12.89 

0.200 22.00 14.27 

0.100 23.96 13.31 

 

Figure 8. Plane strain simulation DENT, B/W=0.4 , a/W=0.25 

0

500

1000

1500

0,0 0,5 1,0 1,5 2,0 2,5

J
 [
N

/m
m

]

P/P0 [-]

3D f inite element

Plane stress (analytical, Kumar)

Plane strain (analytical, Kumar)

Plane stress (Faucher)

Plane strain (Faucher)

0

500

1000

0,0 0,5 1,0 1,5

J
 [
N

/m
m

]

P/P0 [-]

3D f inite element

Plane stress (analytical, Kumar)

Plane strain (analytical, Kumar)

Plane stress (Faucher)

Plane strain (Faucher)

0

100

200

0,0 0,5 1,0 1,5

J
 [
N

/m
m

]

P/P0 [-]

3D f inite element

Plane stress (analytical, Kumar)

Plane strain (analytical, Kumar)

Plane stress (Faucher)

Plane strain (Faucher)



5 CONCLUSIONS 

The finite element model has proven accuracy for the calculation of J-integral values for fracture mechanics 
standardized specimens, such as CCT and DENT. Both the 3D and 2D plane strain simulations give 
representative values as compared to known analytical solutions. As a conclusion, the model can be 
confidently used to determine values of the J-integral. This is a first step towards evaluating two parameter 
J-Q constraint.  

6 NOMENCLATURE  

J J-integral N/mm 

Je  elastic part of the J-integral N/mm 

Jp  plastic part of the J-integral N/mm 

J0  normalizing factor J-integral N/mm 

σ stress MPa 

ε strain - 

σ0 yield stress MPa 

ε0 yield strain - 

E Young’s modulus MPa 

n strain hardening coefficient - 

KI stress intensity factor, mode I MPa   

P  tensile force  N 

P0 normalized tensile force N 

ν Poisson’s ratio - 

a  crack depth mm 

B  specimen thickness mm 

W  specimen width mm 

L Specimen length mm 

b half of the remaining ligament mm 
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