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Abstract. In this paper we conceive an interval-valued continuous cel-
lular automaton for describing the spatio-temporal dynamics of an epi-
demic, in which the magnitude of the initial outbreak and/or the epi-
demic properties are only imprecisely known. In contrast to well-establish-
ed approaches that rely on probability distributions for keeping track
of the uncertainty in spatio-temporal models, we resort to an interval
representation of uncertainty. Such an approach lowers the amount of
computing power that is needed to run model simulations, and reduces
the need for data that are indispensable for constructing the probability
distributions upon which other paradigms are based.
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1 Introduction

As a consequence of their rigorous formulation of macroscopic phenomena, as
well as their rich history which can be traced back to the development of mod-
ern calculus during the 17th and 18th century, and during which their efficacy
has been proven manifold, ordinary differential equations (ODEs) are generally
resorted to for describing (a)biological processes, as illustrated extensively in the
work of Murray [16], whereas partial differential equations (PDEs) are mostly
employed if one is not merely interested in the process’ temporal dynamics but
also in the spatial patterns it generates, such as the spread of an epidemic [17].
Further, in order to cope with the variability inherent to natural processes, re-
searchers have resorted to stochastic DEs [20], fuzzy DEs [11, 19], and to massive
Monte Carlo (MC) simulations [26] in the hope that the simulation results ob-
tained through a model based upon one of these approaches would agree to a
larger extent with the described process than the outcome of their deterministic
counterparts do. Yet, each of these paradigms suffers from a serious drawback.
More specifically, stochastic DEs are difficult to solve analytically, or require
advanced numerical techniques in order to find an approximate solution, the
theory on fuzzy ODEs, and, especially fuzzy PDEs is still maturing, while much
computing time and effort is needed to perform MC simulations.
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To overcome these barriers, we propose an interval-valued continuous cellular
automaton (ICCA) for describing epidemic spread if there is imprecision involved
about the magnitude of the initial outbreak or the epidemic’s characteristics. In
essence, an ICCA can be regarded as a continuous CA (CCA) – also known
as a coupled-map lattice – formulated by Kaneko [9], in which a cell’s state is
represented by an interval in R, and not longer by a single real value.

A short overview of the mathematical preliminaries that are essential for a
clear understanding of this paper is given in Section 2. In the third section we
introduce the ICCA that can be used to describe epidemic spread if there is
imprecision involved in the magnitude of the initial outbreak or the epidemic’s
characteristics. The former is addressed in the first part of the final section,
while the latter is investigated more closely in the second part of this paper’s
final section.

2 Preliminaries

For the sake of clarity we state the definition of an ICCA on an arbitrary tessella-
tion of a 2-dimensional Euclidean space. This paradigm constitutes an extension
to the CCA paradigm since the states of the spatial entities are represented by
an interval-valued in R, while it also entails an extension to the classical CA
paradigm conceptualized by von Neumann [27] since it allows irregular tessella-
tions of R

2.

Definition 1. (Interval-valued continuous cellular automaton)
An interval-valued continuous cellular automaton (ICCA) C can be represented
as a sextuple

C = 〈T , S, s, s0, N, Φ〉 ,

where

(i) T is a countably infinite tessellation of a 2-dimensional Euclidean space R
2,

consisting of cells cj, j ∈ N.
(ii) S is an infinite set of intervals, where

S ⊆ [R] = {[y1, y2] | y1 < y2 ∧ y1, y2 ∈ R} .

(iii) The output function s : T × N → S yields the state value of cell cj at the
t-th discrete time step, i.e. s(cj , t) = [s1(cj , t), s2(cj , t)].

(iv) The function s0 : T → S assigns to every cell cj an initial state, i.e.
s(cj , 0) = s0(cj).

(v) The neighborhood function N : T →
∞
⋃

p=1
T p maps every cell cj to a finite

sequence N(cj) = (cjk
)
|N(cj)|
k=1 , consisting of |N(cj)| distinct cells cjk

.
(vi) Φ = (φj)j ∈N

is a family of functions

φj : S|N(cj)| → S ,
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each φj governing the dynamics of cell cj, i.e.

s(cj , t + 1) = φj

(

s̃(N(cj), t)
)

,

where s̃(N(cj), t) =
(

s(cjk
, t)

)|N(cj)|

k=1
.

In the framework of this paper, we define N in such a way that N(cj) yields
the Moore neighborhood of cj , consisting of those cells ck ∈ T that share either
a vertex or a line segment with cj . Sticking to this neighborhood function, it
becomes straightforward to map T on a undirected graph G(V,E), with vertex
set V = T , while E represents the edge set of G, containing an edge between cj

and ck if ck ∈ N(cj). Furthermore, in the remainder of this paper we restrict to
the family of ICCA for which φj is the same for all cj ∈ T .

Definition 2. (Homogeneous interval-valued continuous cellular automaton)
A homogeneous interval-valued continuous cellular automaton (ICCA) is an
ICCA fulfilling premises (i)-(v) of Definition 1 and for which there exists a
Θ :

⋃

k∈N
Sk → S such that

s(cj , t + 1) = Θ
(

s̃ (N(cj), t)
)

.

Essentially, the construction of a homogeneous ICCA is less intricate than the
composition its generalized counterpart given by Definition 1 since only one
function Θ should be chosen that governs the dynamics of every cj ∈ T . Actually,
most studied CA, such as rule 30 or the Game of Life [8], belong to this CA
family.

3 A spatially explicit model for describing epidemic

spread

3.1 The model

The rich variety of CCA- and CA-based models that has been developed during
the last decade for describing various spatial biological phenomena such as epi-
demics [6, 14, 28], population dynamics [3, 5], tumor growth [13, 23, 24], biofilm
development [21, 22] and many other phenomena [10, 25] is illustrative for the
suitability of such models to mimic complex bioprocesses.

In a forthcoming work, Baetens and De Baets [2] propose a generalized CCA
for modelling various biological processes that are traditionally described by
means of PDEs. In this paper we focus on an epidemic sweeping through a
geographical region, and which involves only non-reproducing susceptible and
infected individuals. The spatio-temporal dynamics of such an epidemic can be
captured by the following set of difference equations



















H(cj , t + 1) = H(cj , t) − H(cj , t)
∑

ck∈N(cj)

wjk F (Uj , djk) U(ck, t)

U(cj , t + 1) = U(cj , t) + H(cj , t)
∑

ck∈N(cj)

wjk F (Uj , djk) U(ck, t)
(1)
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where H(cj , t), resp. U(cj , t), represent the fraction of susceptible (healthy), resp.
infected (unhealthy) individuals within polygon cj at the t-th time step such that
H(cj , t)+U(cj , t) = 1, at all t, and for all cj , F is a function describing the effect
of landscape and connectivity characteristics, embodied in Uj , on the epidemic,
djk is the distance measured on a graph between the polygons cj and ck. Further,
wjk is a weighing factor, representing the influence of every ck ∈ N(cj) in the
determination of H(cj , t + 1). A brief analysis of Eq. (1) shows that it has two
fixed points, namely

(

H∗
j , U∗

j

)

= (0, 1) and
(

H∗
j , U∗

j

)

= (1, 0). Clearly, this model
may be regarded as a discrete analog of a PDE-based SI-model, such as described
in [17].

Taking into account that H(cj , t) + U(cj , t) = 1, at all t, and for all cj ,
we observe that the epidemic’s dynamics can be tracked by considering only
one of the system’s equations. Further, by assuming that the region is spatially
homogeneous, meaning that F does not depend on Uj , we can reduce Eq. (1) to

U(cj , t + 1) = U(cj , t) + H(cj , t)
∑

ck∈N(cj)

wjk H(djk)U(ck, t) , (2)

where we introduced the function H, for which

H(djk) =

{

ν0, if djk = 0,
ν1, if djk = 1,

(3)

with ν0 and ν1 quantifications of the epidemic’s virulence. These measures have
to be chosen such that

∑

ck∈N(cj)

wjk H(djk) ≤ 1, ∀ cj , (4)

assuring that 0 ≤ U(cj , t) ≤ 1, at all t, and for all cj . Finally, we put wjk = 1
8

for all j, k and j 6= k and wjk = 1 if j = k. Consequently, cj ’s eight nearest
neighbours influence U(cj , t + 1) to the same degree.

3.2 Incorporating uncertainty in the proposed model

Clearly, the above outlined model is deterministic since it yields exactly the same
simulation result if its parameters and the initial condition from which it evolves
are unchanged. In order to turn it into a stochastic model that is capable of
grasping the variability inherent to natural process, commonly, it is presumed
that H(cj , 0) and U(cj , 0), or the model’s parameters follow a prescribed type
of probability distribution, and the model is simulated through extensive MC
simulations. Unfortunately, the latter require much computing time and effort,
whereas a thorough construction of the aforementioned distributions demands a
considerable amount of spatial data, which, mostly, cannot be collected easily.

For that reason, we propose to characterize uncertainty by using an inter-
val representation of the variables and parameters in Eq. (2). More specifically,
in the remainder of this paper H(cj , t) and U(cj , t) are considered intervals
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Fig. 1. Non-interactive (a) and interactive (b) intervals.

in [0, 1], such that we can write H(cj , t) = [h1(cj , t), h2(cj , t)] and U(cj , t) =
[u1(cj , t), u2(cj , t)]. Since the notion of uncertainty is for most researchers in-
extricably bound up with probability distributions, we will refer to an interval
characterization of uncertainty as imprecision.

Seen the absence of derivatives or advanced mathematical functions in Eq. (2),
it is relatively straightforward to evolve the system’s spatio-temporal dynamics
by means of basic interval arithmetic [15]. However, there is one pitfall that
complicates the calculations, and inevitably leads to faulty conclusions if dis-
carded. More precisely, one has to bear in mind the coupling between H(cj , t)
and U(cj , t) through the condition H(cj , t) + U(cj , t) = 1, at all t, and for all
cj , which makes that H(cj , t) and U(cj , t) cannot take values independently of
each other, so they can be termed interactive variables [7]. Hence, mathematical
operators may not act on all couples in H(cj , t) × U(cj , t) (Fig. 1(a)), but only
on the couples contained in

{l (h1(cj , t), u2(cj , t)) + (1 − l) (h2(cj , t), u1(cj , t)) | l ∈ [0, 1]} , (5)

such as depicted in Figure 1(b).
In view of the existing interactivity, we can then write

H(cj , t) + U(cj , t) = [h1(cj , t) + u2(cj , t), h2(cj , t) + u1(cj , t)] , (6)

and, analogously,

H(cj , t) · U(cj , t) = [min (h2(cj , t) · u1(cj , t), h1(cj , t) · u2(cj , t)) ,

max (h2(cj , t) · u1(cj , t), h1(cj , t) · u2(cj , t))] . (7)

4 Simulation study

In this section two sources of imprecision in Eq. (2) are examined more closely.
The first one concerns the initial condition U(cj , 0) that is necessary to itera-
tively solve Eq. (2), and which can be deduced from spatial epidemiological data
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that are becoming increasingly available as indicated by Beale [4]. Nonetheless,
we must be aware of the imprecision that can be present in the outbreak data,
as illustrated only recently by the outbreak of H1N1 [12]. Analogously, the pa-
rameters in Eq. (3) might only be known imprecisely. This is regarded as the
second source of imprecision. All simulations reported in this section were per-
formed in Mathematica 7.0 (Wolfram Research, Inc.) on a desktop PC with
an Intel Dual Quad Core 3.16 GHz processor. Although a square tessellation
consisting of 101 × 101 polygons was used in this paper, the described simula-
tions could easily be performed when an irregular tessellation is employed. Such
an irregular tessellation seamlessly complies with the spatio-temporal data in
vector format [1], which are commonly available through geographical informa-
tion systems and can contribute considerably to a more accurate description
of bioprocesses. No boundary conditions had to be imposed since we employed
differentiated neighborhood structures along the tessellation’s boundaries. As
such, the use of periodic boundary conditions, which is rather questionable if
one wants to simulate an epidemic over a given geographical extent, is avoided.

4.1 Imprecise initial conditions

Often only imprecise information is available on the magnitude of an epidemic
during its initial stage. This kind of imprecision can be incorporated easily in
the model (Eq. (2)), by choosing U(cm, 0) an interval in [0, 1], where cm repre-
sents the polygon in which the epidemic broke out. In practice, the choice of an
appropriate interval should be based upon expert opinions, though, in order to
exemplify the ability of the formerly described discrete modeling paradigm to
incorporate imprecision it suffices to adopt an arbitrary initial condition such as

U(cj , 0) =

{

[0.2, 0.4] , if j = m,

[0, 0] , else .
(8)

Further, we assume that reliable information is available on the virulence of
an epidemic, which allows us to assess ν0 = 0.5 and ν1 = 0.5, meaning that
the spread of an infection in a polygon cj can be equally attributed to infected
individuals living in cj as to infected individuals residing in cj ’s neighborhood
N(cj).

Figure 2 shows the center of U(cj , t) at two, five, ten and fifteen time steps
after an epidemic outbreak occurred in the polygon cm, as well as the length
of the interval U(cj , t), denoted |U(cj , t)|, at the same number of time steps.
The former gives information on the expected proportion of infected individuals
in every cj , while the latter quantifies the imprecision that is related to this
proportion. For reasons of clarity, we limited the depicted spatial extent of this
figure to polygons through which the epidemic sweeps during the considered
simulation period. This figure clearly shows that the imprecision originating
from the imprecisely known proportion of infected individuals at t = 0 in the
polygon cm, propagates circularly like the epidemic wavefront. Since Figure 2(f)
clearly shows that |U(cj , t)| → 0 as t increases, we may conclude that the ICCA
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evolves towards its fixed point
(

H∗
j , U∗

j

)

= (0, 1), notwithstanding we imposed
an imprecise initial condition. It should be stressed that this intuitive tendency
would not have been observed if the formerly described interactivity between
the model’s variables was discarded.

4.2 Imprecise epidemic properties

In this section we consider the model given by Eq. (2) with imprecise initial
conditions given by Eq. (8), but in addition we assume that also ν0 is only
known imprecisely. The imprecision related to this parameter can be taken into
account by representing it as an interval in [0, 1]. For that purpose, we choose
ν0 = [0.2, 0.5]. Figure 3 visualizes the length of the interval U(cj , t), denoted
|U(cj , t)| two, five and ten time steps after an epidemic struck cm. Comparing
Figs. 2(b), 2(d) and 2(f) on the one hand, and Fig. 3 on the other hand, one
clearly sees that U(cj , t) is considerably larger when both the initial condition
and ν0 are only imprecisely known. We verified that the maximum attainable
interval length spanned the entire unit interval in polygons more distant from
cm as the wavefront propagates, which can be attributed to the successive non-
interactive multiplication of ν0 and U(cj , t). Nevertheless, U(cj , t) tended to a
crisp number as t → ∞ since the ICCA evolves towards its fixed point (0, 1).

5 Discussion

Notwithstanding it was shown in the previous section that the proposed ICCA
provides a means to deal with the imprecise nature of an epidemic in terms of
the size of its initial magnitude and its properties, we must emphasize that the
proposed paradigm is still to be improved in such a way that the quantities
enclosed in a given interval are assigned a possibility with which they occur.
Then, the impreciseness would no longer be represented by an interval that
merely encloses all possible values, but by a so-called fuzzy interval as depicted
for illustration in Fig. 4. Unavoidably, this brings with it a complication of
the calculations involved that then should be done in the light of Zadeh’s [29]
extension principle making that approach computationally less efficient than
an ICCA. Naturally, an ICCA is trivially efficient since it merely requires two
parallel model simulation, one for each interval limit, whereas a multiple of them
would be required by MC methods. Off course, the additional computational
effort enables to treat uncertainty in a much more informative way. Yet, by
relying on fuzzy intervals one could combine an efficient numerical recipe, which
would still not demand as many model simulations as needed for MC methods
since Nguyen’s [18] theorem can be invoked, with a model output bearing a much
higher information degree.

6 Conclusions

In this paper we showed that imprecise information, described by means of in-
tervals, can be used easily within a spatially explicit epidemic spread model that
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Fig. 2. Proportion of infected individuals, more precisely, the center of U(cj , t) (a,c,e),
and the length of the interval U(cj , t), denoted |U(cj , t)| (b,d,f), two (a-b), five (c-d)
and ten (e-f) time steps after an epidemic broke out in the center polygon cm of a
square tessellation with an initial magnitude given by Eq. (8).
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Fig. 3. Length of the interval U(cj , t) two (a), five (b) and ten (c) time steps after an
epidemic broke out in the center polygon cm of a square tessellation with an initial
magnitude given by Eq. (8), and ν0 = [0.2, 0.5].
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Fig. 4. An exemplary fuzzy interval in which every quantity in [0, 1] is assigned a grade
of membership to the set of infected individuals.
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is based upon the continuous CA paradigm. More precisely, we demonstrated
that uncertainty arising from both imprecise initial conditions or an epidemic’s
properties can be taken into account straightforwardly. The presented modeling
framework is perfectly suited to cope with the growing importance and availabil-
ity of spatio-temporal data. In forthcoming work, we will extend the presented
model to cover also recovered individuals such that it can serve as a full-fledged
alternative to PDE-based models. Besides, instead of representing imprecision
by means of intervals, fuzzy numbers could be employed if there is information
on the possibility with which every element in the interval occurs.
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