

Cradle-to-cradle recycling of nutrients from bio-digestion waste

Céline Vaneeckhaute¹, Erik Meers¹, Evi Michels¹, Greet Ghekiere², Frederik Accoe³, Filip Tack¹

¹ Laboratory of Analytical and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent, Belgium, celine.vaneeckhaute@ugent.be, www.ecochem.be

² Provincial Research and Advise Centre for Agriculture and Horticulture (Inagro vzw), www.inagro.be

³ Flemish Coordination Centre for Manure Processing (VCM vzw), www.vcm-mestverwerking.be

INTRODUCTION

Why is nutrient recycling an important challenge in the transition to a bio-based economy ?

- Nutrient resources are rapidly depleting, whereas the demand is still increasing¹
- Significant amounts of fossil energy are required for the production and transport of chemical fertilizers²

RESULTS & DISCUSSION

Dry weight biomass yield

• Costs for energy and fertilizers are increasing³

What are the aims of this study ?

- Recuperation of nutrients from bio-digestion waste as green fertilizers
- Evaluation of the impact on biomass yield and soil quality
- Economic and ecological analysis

Nitrogen balance (Conducted with NDICEA 6.0.16)

N (kg/ha)	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8
Manure supply	216 ± 0	216 ± 0	216 ± 0	217 ± 1	217 ± 1	217 ± 1	225 ± 0	230 ± 0
Nitrogen fixation	0	0	0	0	0	0	0	0
Deposition	25	25	25	25	25	25	25	25
Total supply	241 ± 0	241 ± 0	241 ± 0	242 ± 1	242 ± 1	242 ± 1	250 ± 0	255 ± 0
Removal with products	306 ± 42	301 ± 21	309 ± 20	329 ± 33	317 ± 40	313 ± 28	344 ± 42	303 ± 53
Surplus	-65 ± 42	-60 ± 21	-68 ± 20	-87 ± 33	-75 ± 40	-71 ± 28	-94 ± 42	-49 ± 53
Volatilization	-17	-18	-19	-16	-19	-24	-17	-17
Denitrification	-17	-14	-16	-21	-21	-18	-31	-19
Leaching/denitrification	-58	-53	-56	-53	-47	-52	-60	-55
Decomposition organic	156	145	162	182	165	169	206	142
Equilibrium balance	-0.6	0.4	3.1	5	3	4	4	2.2

Phosphorus balance

Organic-biological waste

FIELD EXPERIMENT

Eight different fertilization scenarios (n=4)

B

Scenario	Chemical start N	Animal manure	Chemical N	Air scrubber water	Mixture digestate/ liquid fraction	Liquid fraction digestate	Chemical K ₂ O
1	Х	Х	Х	-	-	-	Х
2	Х	Х	-	Х	-	-	Х
3	-	Х	-	Х	-	-	Х
4	Х	-	Х	-	Х	-	Х
5	Х	-	-	Х	Х	-	Х
6	-	-	-	Х	Х	-	Х
7	Х	Х	-	-	-	Х	Х
8	-	Х	-	-	-	X	Х

Product sampling (A), fertilizer application (B), soil and plant sampling (C)

P ₂ O ₅ (kg/ha)	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8
Manure supply	108 ± 3	108 ± 3	108 ± 3	74 ± 7	74 ± 7	74 ± 7	105 ± 3	105 ± 3
Deposition	3	3	3	3	3	3	3	3
Total supply	111 ± 3	111 ± 3	111 ± 3	77 ± 7	77 ± 7	77 ± 7	105 ± 3	105 ± 3
Removal with products	135 ± 18	130 ± 9	123 ± 12	141 ± 12	146 ± 22	142 ± 4	151 ± 19	140 ± 30
Surplus	-24 ± 21	-19 ± 12	-12 ± 15	-64 ± 19	-69 ± 29	-65 ± 11	-46 ± 22	-35 ± 33
Soil available April	6,389	6,389	6,389	6,389	6,389	6,389	6,389	6,389
Soil available Oct	1,837 ± 382	1,909 ± 273	1,790 ± 121	1,702 ± 349	1,772 ± 372	1,829 ± 224	1,910 ± 114	1,658 ± 93
Leaching/pollution	4,529 ± 403	4,461 ± 285	4,588 ± 136	4,624 ± 368	4,548 ± 401	4,495 ± 235	4,434 ± 136	4,696 ± 126

Economic (A) and ecological (B) evaluation

CONCLUSIONS & PERSPECTIVES

Recycling of nutrients from bio-digestion waste derivatives in agriculture can:

Physico-chemical analysis

Α

- Fertilizer value: total content and plant available contents of macro- and micronutrients in products, soils and plants
- Soil quality: pH, EC, organic carbon, nitrate residue, nutrient leaching, sodium adsorption ratio, phosphorus and heavy metal accumulation

- create sustainable substitutes for chemical fertilizers
- increase the soil nutrient use efficiency
- result in significant economic and ecological benefits
- ⇒The use of these products should be stimulated in European legislation
 ⇒Further field research is on-going in order to validate the results and evaluate the impact on soil quality in the longer term

REFERENCES

- 1. Fixen, P.E.; Johnston, A.M. World fertilizer nutrient reserves: a view to the future. Journal of the science of food and agriculture. 2012, 92(5), 1001-1005.
- 2. Gellings, C.W.; Parmenter, K.E. Energy efficiency in fertilizer production and use, in Efficient Use and Conversation of Energy; Eolss Publishers: Oxford, U.K., 2004.
- 3. Oskam, A., Meester, G., Silvis, H. EU policy for agriculture, food and rural areas; Wageningen Academic Publishers: Wageningen, N.L., 2011.