
Computational methodology

• Classical transition state theory:

• Variational transition state theory:
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Introduction

Polysulfides have many industrial applications: CO and coke inhibition during thermal cracking of 

hydrocarbons, hydrotreatment catalyst activation and chain length control of polymerization reactions.

In order to optimize the deployment of sulfur compounds, accurate reaction networks are required that 

describe the reaction behaviour of these compounds under process conditions.

This work focusses on the thermal decomposition of dimethyldisulfide (DMDS).
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Thermal decomposition of DMDS

• Kinetic model elementary reactions kinetic parameters

experiment: time consuming, expensive but robust

simulation: cheap, general applicable

Conclusions

• A level of theory study was conducted on the accuracy of different ab

initio methods to describe the thermochemistry and thermodynamics

of organosulfur compounds. The CBS-QB3 composite method yields

an ideal trade-off between accuracy and computational requirements.

• A radical reaction network was constructed describing the thermal

decomposition of DMDS.

• Simulations show excellent agreement with the experimental data. 

First order decomposition rates of DMDS are reproduced within a 

factor 2, while the product yields are described accurately.
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• Radical reaction network

4 bond scissions / recombinations: 

16 homolytic substitution reactions:

7 additions / β-scissions:

• Accurate prediction of experimentally

observed yields (± 600 K, 0.1 bar)

• Decomposition rate kmax [s-1]

[mol%] EXP* SIM

H2S 31 20

CH2=CH2 16 18

CH3SH 38 34

CS2 10 11

Level of theory study

• Thermochemistry

5 compounds: H2S, H2C=S, CH3SCH3, HSSH, CH3SSCH3

• Rate coefficients

1) H2S + H• → H2 + HS•

2) H2S + CH3
• → CH4 + HS•

3) CH3SCH3 + H• → CH3SH + CH3
•

4) CH3SSCH3 + H• → CH3SH + SCH3
•

5) H2C=S + CH3
• → C2H5S
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General applicable for reactions that have a maximum potential 

energy along the reaction coordinate, e.g. substitution reactions 

and addition/ß-scission reactions

For radical recombination and bond scission reactions, no 

transition state can be found and a more generalized theory has 

to be applied

The reaction coordinate s is scanned for the minimum reaction    

flux

CAS calculations along s:

- energy and spin multiplicity

- geometry (moments of inertia)

- transitional modes

σ σ*
σ σ*

s

V

T [K] EXP* SIM EXP/SIM

600 8.1 x 10-4 5.3 x 10-4 1.5

650 1.5 x 10-2 8.7 x 10-3 1.7

700 1.8 x 10-1 9.9 x 10-2 1.8

X−Y ↔ X• + Y •

X• + Y−Z ↔ X−Y + Z•

X•−Y−Z ↔ X=Y + Z•
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primary products: CH3SH and H2C=S

secondary products: H2S, CH2=CH2

and cycCH2S2

tertiary product: CS2

Simulated thermal decomposition of DMDS

(homogenous batch reactor, 615 K, 0.1 bar)

Coke formation on reactor tubes

CASSCF/6-311G(2d,d,p) for bond 

scission in CH3SSCH3
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* Coope J.A.R. and Bryce W.A., Can. J. Chem., 32, 768 (1954)
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