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Abstract

This paper explores statistical simulation as a fast simu-
lation technique for driving chip multiprocessor (CMP) de-
sign space exploration. The idea of statistical simulation is
to measure a number of important program execution char-
acteristics, generate a synthetic trace, and simulate that
synthetic trace. The important benefit is that a synthetic
trace is very small compared to real program traces.

This paper advances statistical simulation by modeling
shared resources, such as shared caches and off-chip band-
width. This is done (i) by collecting cache set access prob-
abilities and per-set LRU stack depth profiles, and (ii) by
modeling a program’s time-varying execution behavior in
the synthetic trace. The key benefit is that the statistical pro-
file is independent of a given cache configuration and the
amount of multiprocessing, which enables statistical sim-
ulation to model conflict behavior in shared caches when
multiple programs are co-executing on a CMP. We demon-
strate that statistical simulation is both accurate and fast
with average IPC prediction errors of less than 5.5% and
simulation speedups of 40X to 70X compared to the detailed
simulation of 100M-instruction traces. This makes statisti-
cal simulation a viable tool for CMP design space explo-
ration.

1 Introduction

Architectural simulation is a crucial tool in a computer
designer’s toolbox because of its flexibility, its ease of use
and its ability to drive design decisions early in the design
cycle. The downside however is that architectural simu-
lations are very time-consuming. Simulating an industry-
standard benchmark to completion for a uniprocessor de-
sign point easily takes a couple of weeks, even on today’s
fastest machines and simulators. Culling a large design
space through architectural simulation of complete bench-
mark executions thus simply is infeasible. And this prob-

lem keeps on increasing over time. Given the current era
of CMP design, there is a big quest for efficient simula-
tion techniques for driving the design process of CMPs with
multiple tens of cores integrated on a single chip.

Researchers and computer designers are well aware of
the multi-core simulation problem and have been proposing
various simulation methodologies for coping with it, such as
sampled simulation [1, 7, 15, 17], or parallelized simulation
and/or hardware accelerated simulation using FPGAs [12].
In this paper we take a different approach through statisti-
cal simulation. The idea of statistical simulation is to first
measure a statistical profile of a program execution through
(specialized) functional simulation. These statistics are then
used to build a synthetic trace; this synthetic trace exhibits
the same characteristics as the original program trace, by
construction, but is much shorter than the original program
trace, no more than a few millions of instructions. Simulat-
ing this synthetic trace then yields a performance estimate.
Given its short length, simulating a synthetic trace is done
very quickly.

Previous work has been exploring the statistical simula-
tion paradigm extensively for uniprocessors [5, 8, 9, 11],
and a single study [10] applied statistical simulation to mul-
tithreaded workloads running on shared memory multipro-
cessor systems. None of this prior work addresses the mod-
eling of shared resources in chip multiprocessors though.
This paper advances the statistical simulation methodology
by proposing models for shared resources such as shared
caches and off-chip bandwidth. This makes statistical sim-
ulation a viable fast simulation technique for quickly ex-
ploring chip multiprocessor design spaces. Note that we
do not envision statistical simulation as a substitute to de-
tailed simulation. We rather consider statistical simulation
as a useful complement to detailed simulation at the earliest
stages of the design: the design space can be culled using
statistical simulation, and when a region of interest is iden-
tified, detailed but slower simulation can then be used to
explore the region of interest in greater detail.

This paper makes the following contributions:
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• We extend the statistical simulation methodology to
chip multiprocessors running multi-program work-
loads. To enable the accurate modeling of shared
caches in chip multiprocessors, we collect statistics to
capture the cache access behavior, such as set access
probabilities and per-set LRU stack distance probabili-
ties. Co-simulating synthetic traces annotated with set
and LRU stack distance information then gives an ac-
curate picture of the conflict behavior in shared caches.

• We show that in order to accurately model conflict be-
havior in shared resources, it is important to accurately
model the time-varying program execution behavior.
To this end, we collect a statistical profile and generate
a synthetic mini-trace per instruction interval, and then
subsequently coalesce these mini-traces to an overall
synthetic trace.

• The cache set access and per-set LRU stack dis-
tance statistics make the statistical profile less
microarchitecture-dependent. A single statistical pro-
file for the largest cache of interest during the design
space exploration can now be used to explore vari-
ous cache configurations for a given cache line size
whereas previous work requires a statistical profile for
each cache configuration of interest.

• We demonstrate that the overall framework presented
in this paper is accurate and efficient for quickly ex-
ploring the chip multiprocessor design space.

2 Statistical uniprocessor simulation (in a
nutshell)

Statistical simulation is done in three steps. We first
measure a statistical profile which is a collection of impor-
tant program behavior characteristics. The statistical pro-
file comprises program characteristics such as the instruc-
tion mix, the inter-instruction dependency (through regis-
ters and memory) distribution, the statistical control flow
graph (transition probabilities between basic blocks), per-
branch misprediction rates, per-load/store cache miss rates,
etc.

Subsequently, this statistical profile is used to generate a
synthetic trace. The synthetic trace is a linear sequence of
synthetic instructions. Each instruction has an instruction
type, a number of source operands, an inter-instruction de-
pendency for each source operand (which denotes the pro-
ducer for the given source operand), I-cache miss info, D-
cache miss info (in case of a load), and branch miss info (in
case of a branch). The locality miss events are just labels
in the synthetic trace describing whether the load is an L1
D-cache hit, L2 hit or L2 miss, and whether the load gener-
ates a TLB miss. Similar labels are assigned for the I-cache

and branch miss events. In the final step, this synthetic trace
is simulated on a statistical simulator yielding performance
metrics such as IPC.

The important benefit of statistical simulation is that a
synthetic trace is very short. As such, synthetic traces con-
taining no more than a few million of instructions are suffi-
cient for obtaining converged performance estimates. For
a more elaborate discussion on statistical simulation for
uniprocessors, we refer to [5, 8, 9, 11].

3 Statistical CMP simulation

Statistical simulation as described in the previous sec-
tion cannot be applied in a straightforward manner to model
chip multiprocessors with shared resources. The reason
is that one of the characteristics in a statistical profile is
the cache miss rate for a given cache hierarchy. However,
co-executing multiple programs on a chip multiprocessor
with shared L2 and/or L3 caches will affect the cache miss
rate, the amount of off-chip bandwidth requests, and thus
overall performance. And the level of interaction between
programs is greatly affected by the programs co-executing:
the interaction may be minimal for some co-executing pro-
grams; for others, the amount of interaction can be substan-
tial. Moreover, the level of interaction can be affected by the
CMP cores’ microarchitecture — the amount of interaction
can be very different for one microarchitecture compared to
another.

We now discuss how to extend statistical simulation for
simulating multi-program workloads running on a CMP.
This is done in three steps: (i) cache set and LRU stack pro-
filing, (ii) statistical simulation of shared caches, and (iii)
modeling time-varying program execution behavior.

3.1 Cache set and LRU stack profiling

In order to enable the simulation of shared L2 caches
in a CMP, we collect two novel program characteristics in
the statistical profile, namely the cache set profile and the
per-set LRU stack depth profile. (Throughout the paper we
refer to the shared cache as the L2 cache; extending our
framework to model shared L3 caches is trivial.) For doing
this, we assume a large L2 cache, i.e., the largest L2 cache
one may be potentially interested in during design space ex-
ploration. The cache set and LRU stack depth profiles for
smaller L2 caches can then be derived from the profile mea-
sured for the largest L2 cache, as will be discussed later. In
our experimental setup, the largest L2 cache of interest is a
16-way set-associative 16MB L2 cache.

For every memory reference — this includes instruction
addresses as well as data addresses — we determine the L2
cache set that is to be accessed in the largest L2 cache of
interest. In addition, we also determine the LRU stack depth
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in the given set. The maximum LRU stack depth kept track
of during profiling is (a + 1) with a being the associativity
of the largest L2 cache of interest.

The cache set and per-set LRU stack depth profile can be
used to estimate cache miss rates for caches that are smaller
than the largest L2 cache of interest. All accesses to an LRU
stack depth larger than a will be cache misses in an a-way
set-associative cache. Similarly, all accesses to sets s and
s + S/2 for a cache with S sets will result in accesses to set
s for a cache with S/2 sets.

The L2 cache set and LRU stack depth profiles are de-
pendent on a given cache line size. In practice, there is only
a few L2 cache line sizes of interest, which limits the num-
ber of L2 cache set and stack profiles that need to be com-
puted.

3.2 Statistical simulation of a shared L2 cache

When generating a synthetic trace we probabilistically
generate a cache set and LRU stack depth accessed for each
memory reference based on the measured profiles. Simu-
lating the synthetic trace on a CMP with a shared L2 cache
then requires that we effectively simulate the L1 D-cache
and the L2 cache. In statistical simulation for a uniproces-
sor system on the other hand, caches do not need to be sim-
ulated since cache misses are simply flagged as such in the
synthetic trace; based on these cache miss flags, appropriate
latencies are assigned. Statistical simulation of a CMP with
a shared cache, on the other hand, requires that the caches
are simulated in order to model shared cache conflict behav-
ior.

Each cache line in the shared L2 cache contains the fol-
lowing information:

• The ID of the program that most recently accessed the
cache line; we will refer to this ID as the program ID.
This enables the statistical simulator to keep track of
the program ‘owning’ the cache line.

• The set index of the set in the largest L2 cache of
interest that corresponds to the given cache line; we
will refer to this set index as the stored set index. In
case the L2 cache being simulated has as many sets as
the largest L2 cache of interest, the stored set index is
the set index of the simulated cache itself. The stored
set index will enable the statistical simulator to model
cache lines conflicting for a given set in case the num-
ber of sets is reduced for the simulated cache compared
to the largest cache of interest.

• A valid bit stating whether the cache line is valid.

• A cold bit stating whether the cache line has been ac-
cessed. The cold bit will be used for driving the cache
warmup as will be discussed later.

• In case of a write-back cache, we also maintain a dirty
bit stating whether the cache line has been written by
a store operation.

• And finally, we also keep track of which instruction in
the synthetic trace accessed the given cache line; this
is done by storing the position of the instruction in the
synthetic trace which we call the instruction ID.

Simulating the shared L2 cache then proceeds as follows
assuming that all memory references are annotated with set
information s and LRU stack depth information d for the
largest cache of interest. We first determine the set s′ being
accessed in the simulated cache. The cache access is con-
sidered a cache hit in case there are at least d valid cache
lines in set s′ for which (i) the stored program IDs equal the
ID of the program being simulated, and (ii) the stored set
indices equal s. In case the above conditions do not hold,
the cache access is seen as a cache miss. The most recently
accessed cache block is put on top of the LRU stack for the
given set.

An appropriate warmup approach is required for the L2
cache; without appropriate warmup, the L2 cache would
suffer from a large number of cold misses. Making the syn-
thetic trace longer could solve this problem, however, this
would definitely affect the usefulness of statistical simula-
tion which is to provide performance estimates from very
fast simulation runs. As such, we take a different approach
and warmup the L2 cache. The warmup technique that we
use first initializes all cache lines as being cold by setting
the cold bit in all cache lines. The warmup approach then
applies a hit-on-cold strategy, i.e., upon the first access to
a given cache line we assume it is a hit and the cold bit is
set to zero. Thit hit-on-cold warmup strategy is simple to
implement, and is fairly accurate.

During this work, we also found that it is important to
model L1 D-cache write-backs during synthetic trace simu-
lation because write-backs can have a significant impact on
the conflict behavior in the shared L2 cache. This is done
by simulating the L1 D-cache similar to what is described
above for the L2 cache. We assume that an L1 D-cache
write-back is an L2 cache miss in case all instruction IDs
in the given L2 set are larger than the instruction ID of the
cache line written back from L1 into L2; if not, it is assumed
a hit.

3.3 Modeling time-varying behavior

A critical issue to the accuracy of statistical simulation
for modeling CMP performance is that the synthetic trace
has to capture the original program’s time-varying phase
behavior. The reason is that overall performance is affected
by the phase behavior of the co-executing programs: the
relative progress of a program is affected by the conflict
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behavior in the shared resources [17]. For example, extra
cache misses induced by cache sharing may slow down a
program’s execution. This one program running relatively
slower may result in different program phases co-executing
with the other program(s), which, in turn, may result in dif-
ferent sharing behavior, and thus faster or slower relative
progress.

To model the time-varying behavior we divide the entire
program trace into a number of instruction intervals; an in-
struction interval is a sequence of consecutive instructions
in the dynamic instruction stream. We then collect a statis-
tical profile per instruction interval and generate a synthetic
mini-trace. Coalescing these mini-traces yields the overall
synthetic trace. The synthetic trace then captures the origi-
nal trace’s time-varying behavior.

4 Experimental setup

We use the SPEC CPU2000 benchmarks with the ref-
erence inputs in our experimental setup. The Alpha bina-
ries of the CPU2000 benchmarks were taken from the Sim-
pleScalar website. We considered 100M single (and early)
simulation points as determined by SimPoint [13, 14] in all
of our experiments. The synthetic traces are 4M instruc-
tions long, unless mentioned otherwise — we provide a mo-
tivation for this in Section 5.3. For measuring the statisti-
cal profiles capturing time-varying behavior, we measure a
statistical profile per 10M-instruction interval. From these
ten statistical profiles, we then generate 10 400K-instruction
mini-traces that are subsequently coalesced to form the 4M-
instruction synthetic traces.

We use the M5 simulator [2] in all of our experiments.
Our baseline core microarchitecture is a 4-wide superscalar
out-of-order core with 64KB private L1 I- and D-caches
with a 2-cycle access latency. When simulating a CMP,
we assume that all cores share the L2 cache as well as the
off-chip bandwidth for accessing main memory; the base-
line L2 cache is an 8-way set-associative 4MB cache with
a 12-cycle access latency; main memory has an access la-
tency of 150 cycles. We model write buffers and MSHRs
in our cache hierarchy. Simulation stops as soon as one of
the co-executing programs terminates, i.e., as soon as one
of the programs has executed 100M instructions in case of
detailed simulation, or 4M instructions in case of statistical
simulation.

5 Evaluation

We now evaluate the statistical simulation methodology
proposed in this paper along three dimensions: (i) accuracy
both in terms of a single design point as in terms of explor-
ing a design space, (ii) simulation speed, and (iii) storage
requirements for storing the statistical profiles on disk.
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Figure 1. Evaluating the accuracy of statisti-
cal simulation for single-program and homo-
geneous multi-program workloads.

5.1 Accuracy

Homogeneous workloads. The top graph in Figure 1
evaluates the accuracy of statistical simulation for a single
program running on a single-core processor. The average
IPC prediction error is 1.6%; this is in line with our prior
work [8]. The other three graphs in Figure 1 evaluate the
accuracy when running homogeneous multi-program work-
loads on a multi-core with a shared L2 cache, i.e., multiple
copies of the same program are executed simultaneously.
The average prediction error for the two-core, four-core
and eight-core machines are 3.1%, 4.5% and 4.6%, respec-
tively. Statistical simulation is capable of accurately track-
ing the impact of the shared L2 cache and off-chip band-
width on overall application performance: for some pro-
grams, resource sharing has almost no impact, see for ex-
ample mesa; for other programs on the other hand, sharing
has a large impact, see for example art, mgrid and swim.
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Figure 2. Evaluating the accuracy of sta-
tistical simulation for heterogeneous two-
program workloads: detailed simulation (DS)
vs. statistical simulation (SS).

0

1

2

3

4

5

6

7

8

DS SS DS SS DS SS DS SS DS SS DS SS DS SS DS SS DS SS DS SS DS SS DS SS DS SS DS SS DS SS

art-mcf-

wupwise-

swim

fma-

lucas-

facerec-

equake

mesa-

swim-

wup-

lucas

ammp-

art-

facerec-

sixtrack

vortex-

bzip2-

mcf-

applu

galgl-

gzip-

applu-

crafty

galgel-

twolf-

vpr-gcc

applu-

gzip-

parser-

fma

eon-

vpr-

equake-

perl

art-

eon-

gzip-

mesa

mgrid-

parser-

bz-

sixtrack

gcc-

gap-

parser-

fma

crafty-

twolf-

mgrid-

apsi

ammp-

apsi-

perl-

gzip

gap-

eon-

mesa-

vortex

IP
C

program 0 program 1 program 2 program 3

Figure 3. Evaluating the accuracy of sta-
tistical simulation for heterogeneous four-
program workloads: detailed simulation (DS)
vs. statistical simulation (SS).

Heterogeneous workloads. Figures 2 and 3 evaluate the
accuracy of statistical simulation for randomly chosen het-
erogeneous two-program and four-program workloads, re-
spectively. These figures show that statistical simulation
not only accurately predicts overall system IPC through-
put for heterogeneous workloads, it also accurately predicts
per-program IPC values. For example, for the two-program
workloads, the average throughput prediction error is 2.4%
and the average per-program IPC prediction error is 3.4%.

Modeling time-varying behavior. As mentioned in Sec-
tion 3.3, it is important to model a program’s time-varying
behavior in the synthetic trace when studying shared re-
sources in CMPs through statistical simulation. This is ex-
perimentally evaluated in Figure 4 which shows the average
IPC prediction error for heterogeneous two-program work-
loads (i) without time-varying behavior modeling versus (ii)
with time-varying behavior modeling i.e., by generating and
coalescing mini-traces. Modeling time-varying behavior re-
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Figure 4. Evaluating the importance of mod-
eling time-varying behavior.

duces the IPC prediction error from 8.9% to 3.4% on aver-
age.

5.2 Design space exploration

We now demonstrate the accuracy of statistical simula-
tion for driving design space exploration, which is the ul-
timate goal of the statistical simulation methodology. To
do so, we consider a design space with varying L2 cache
configurations and a varying number of cores. We vary the
L2 cache size from 1MB to 16MB with varying associativ-
ity from 2- to 16-way set-associative; the cache line size is
kept constant at 64 bytes. And we vary the number of cores
from 1, 2, 4 up to 8. This design space consisting of 56
design points is small compared to a realistic design space,
however, the reason is that we are validating the accuracy of
statistical simulation against detailed simulation for each of
the design points. The detailed simulation for all those 56
design points was very much time-consuming, which is the
motivation for statistical simulation in the first place.

Figure 5 shows a scatter plot with system IPC through-
put through detailed simulation on the vertical axis ver-
sus system IPC throughput through statistical simulation on
the horizontal axis. The two graphs in Figure 5 show two
different heterogeneous eight-program mixes; one mix of
L2-intensive benchmarks (on the left), and one mix of L2-
intensive and non L2-intensive benchmarks (on the right).
The IPC throughput estimates through statistical simulation
show a close to perfect correlation with the IPC throughput
numbers obtained from detailed simulation. The average
IPC prediction error over the entire design space is 5.5%.
We observed very similar trends for other two-, four- and
eight-program mixes.

Cache design space exploration. Figure 6 illustrates the
accuracy of statistical simulation for estimating the global
shared L2 cache miss rate, i.e., the number of L2 misses di-
vided by the number of L1 accesses. We consider a shared
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Figure 5. Evaluating the accuracy of statistical simulation for exploring CMP design spaces: mea-
sured system IPC throughput through detailed simulation versus estimated system IPC throughput
through statistical simulation. The two graphs represent two eight-program workload mixes.
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Figure 6. Evaluating the accuracy of statistical simulation for exploring the shared L2 cache design
space: global L2 miss rate is shown for detailed simulation versus statistical simulation. The two
graphs represent two eight-program workload mixes.
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Figure 8. Percentage average IPC prediction
error as a function of synthetic trace length.

L2 cache design space consisting of 15 design points by
varying the L2 cache size from 1MB up to 16MB with
varying associativity and number of sets. We show two
eight-program workloads here, but obtained similar results
for other workload mixes. Again, the overall conclusion is
that statistical simulation accurately tracks performance dif-
ferences across cache configurations and across a different
number of cores. Note that these results were obtained from
a single statistical profile, namely a statistical profile for
the largest cache of interest, a 16MB 16-way set-associative
cache. In other words, a single statistical profile is sufficient
to drive a cache design space exploration.

Off-chip bandwidth experiments. Figure 7 shows sys-
tem throughput while varying the off-chip bandwidth for
two workloads that are sensitive to off-chip bandwidth,
namely applu and lucas. The off-chip bandwidth design
space is explored by varying the width (8-byte vs 16-byte)
and frequency (333MHz, 666MHz, 999MHz and 1.3GHz).
Again, we observe that statistical simulation tracks detailed
simulation very accurately.

5.3 Simulation speed

Having shown the accuracy of statistical simulation for
CMP design space exploration, we now evaluate its simula-
tion speed. Figure 8 shows the average IPC prediction error
as a function of the synthetic trace length. For a single-
program workload, the prediction error stays almost flat,
i.e., increasing the size of the synthetic trace beyond 1M in-
structions does not increase prediction accuracy. For multi-
program workloads on the other hand, the prediction accu-
racy is sensitive to the synthetic trace length. The reason
is that the shared cache requires more warmup to establish
the conflict behavior in shared resources between multiple
co-executing programs. However, once the synthetic trace

contains more than 4M instructions, the prediction error re-
mains almost flat. This observation motivated us to report
all of our numbers using 4M instruction synthetic traces.

Recall that in these experiments we went from 100M in-
struction real program traces to 4M instruction synthetic
traces. This is a 25X decrease in the dynamic instruction
count. In our statistical simulator, this results in a 40X to
70X speedup in simulation time. The reason why the sim-
ulation time reduction is larger than the dynamic instruc-
tion count reduction is that the statistical simulator does not
have to model all the functionality a detailed simulator has
to do; for example, the statistical simulator does not model
the branch predictor, the I-cache, etc.

5.4 Storage requirements

As a final note, the storage requirements are modest for
statistical simulation. The statistical profiles when com-
pressed on disk are 24MB on average per benchmark.

6 Related work

Statistical simulation has grown in interest over the re-
cent years and has evolved from fairly simple models [3, 6]
to more and more detailed models [5, 8, 9, 11]. The most
accurate model to date [8] reports an average IPC prediction
error of 2.3% for a wide superscalar out-of-order processor
compared to detailed simulation. Those models are limited
to single-core processor modeling though.

Nussbaum and Smith [10] extended the uniprocessor sta-
tistical simulation method to enable the modeling of mul-
tithreaded programs running on shared-memory multipro-
cessor (SMP) systems. To do so, they extended statistical
simulation to model synchronization and accesses to shared
memory. Cache behavior is modeled based on cache miss
rates though; in other words, they do not model shared
caches.

Chandra et al. [4] propose performance models to predict
the impact of cache sharing on co-scheduled programs. The
output provided by the performance model is an estimate
of the number of extra cache misses for each thread due
to cache sharing. These performance models are limited to
predicting cache sharing effects, and do not predict overall
performance.

Sampled simulation is a popular approach to speed
up simulation. Van Biesbrouck et al. [15, 16, 17] pro-
pose the co-phase matrix for guiding sampled simultaneous
multithreading (SMT) processor simulation running multi-
program workloads. Ekman and Stenström [7] and Wenisch
et al. [18] use random sampling and systematic sampling,
respectively, to speed up multiprocessor simulation. Barr et
al. [1] propose the Memory Timestamp Record (MTR) to
store microarchitecture state (cache and directory state) at
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the beginning of each sample as a checkpoint. The main
advantage of statistical simulation over sampled simulation
is that it requires even fewer instructions to simulate; as
demonstrated in this paper, we reduce the simulation time
by more than a factor 40X to 70X compared to sampled
simulation using 100M instruction samples.

7 Conclusion

Simulating chip multiprocessors is extremely time-
consuming. This is especially a concern in the earliest
stages of the design cycle where a large number of design
points need to be explored quickly. This paper proposed
statistical simulation as a fast simulation technique for chip
multiprocessors running multi-program workloads. In order
to do so, we extended the statistical simulation paradigm (i)
to collect cache set access and per-set LRU stack depth pro-
files, and (ii) to model time-varying program behavior in the
synthetic traces. These two enhancements enable the accu-
rate modeling of the conflict behavior observed in shared re-
sources such as shared caches and off-chip bandwidth. Our
experimental results showed that statistical simulation is ac-
curate with average IPC prediction errors of less than 5.5%
over a broad range of CMP design points, while being 40X
to 70X times faster than detailed simulation of 100M in-
struction traces. This makes statistical simulation a viable
fast simulation approach to CMP design space exploration.
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