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ABSTRACT

This contribution deals with phase noise estimation from pilot
symbols. The phase noise process is approximated by an ex-
pansion of DCT basis functions containing only a few terms.
We propose an algorithm that estimates the DCT coefficients
without requiring detailed knowledge about the phase noise sta-
tistics. We demonstrate that the resulting (linearized) mean-
square estimation error consists of two contributions: a contribu-
tion from the additive noise, that equals the Cramer-Rao lower
bound, and a noise-independent contribution that results from
the phase noise modeling error. Performance can be optimized
by a proper selection of the symbol block length and of the num-
ber of DCT coefficients to be estimated. For large block sizes,
considerable performance improvement is found as compared to
the case where only the time-average of the carrier phase is esti-
mated.

1. INTRODUCTION

Discrete-time processes that have a bandwidth which is
considerably less than the sampling frequency can often
be modeled as an expansion of suitable basis functions,
that contains only a few terms. Such a basis expansion
has been successfully applied in the context of channel
estimation and equalization in wireless communications,
where the coefficients of the channel impulse response are
lowpass processes with a bandwidth that is limited by the
Doppler frequency [1, 2, 3].

Several methods for phase noise estimation exist :

• Phase noise can be estimated by means of a feed-
back algorithm that operates according to the prin-
ciple of the PLL. As feedback algorithms give rise
to rather long acquistion periods, they are not well
suited to systems with burst transmission [4, 5].

• Phase noise is approximated as piecewise constant
over the observation interval. In each subinterval
over which the phase is assumed to be constant, a

conventional feedforward algorithm is used to esti-
mate the local time-average of the phase [4, 5, 6].

• Recently, a factor graph approach for the estimation
of Markov-type phase noise has been presented in
[7], but the algorithm appears rather cumbersome
and assumes detailed knowledge about the phase
noise statistics at the receiver.

In this contribution, we apply the basis expansion model
to the problem of phase noise estimation; the considered
basis functions are those from the discrete cosine trans-
form (DCT). In contrast to the case of channel estimation,
the phase noise does not enter the observation model in
a linear way. Section 2 presents the system description,
which includes the observation model and a general phase
noise model. The phase noise estimation algorithm, based
on the estimation of only a few DCT coefficients, is de-
rived in section 3. Section 4 contains the performance
analysis of the proposed algorithm in terms of the mean-
square error (MSE) of the phase estimate; we consider the
Cramer-Rao lower bound corresponding to the actual ob-
servation model and the performance analysis of the lin-
earized observation model. Analysis results are confirmed
by computer simulations in section 5, which considers
both the mean-square phase estimation error and the asso-
ciated bit error rate (BER) degradation. Conclusions are
drawn in section 6.

2. SYSTEM DESCRIPTION

We consider the transmission of a block of K data symbols
over an AWGN channel that is affected by phase noise.
The resulting received signal is represented as:

r(k) = a(k)ejθ(k) + w(k) for k = 0, ...,K − 1 (1)

where the index k refers to the k-th symbol interval of
length T , {a(k)} is a sequence of data symbols with sym-
bol energy E[|a(k)|2] = Es, the additive noise {w(k)}
is a sequence of i.i.d. zero-mean circular symmetric com-
plex valued Gaussian random variables withE[|w(k)|2] =

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55687089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


N0, and θ(k) is the sum of a static phase offset θ0 and a
zero-mean phase noise process withKxK correlation ma-
trix Rθ.

The symbol sequence {a(k)} contains known pilot sym-
bols at positions ki, i = 0, ...,KP −1, with constant mag-
nitude : |a(ki)|2 = Es. From the observation of the re-
ceived signal at the pilot symbol positions ki, an estimate
θ̂(k) of the time-varying phase θ(k) is to be produced.
This phase estimate will be used to rotate the received sig-
nal before data detection, i.e., the detection of the data
symbols is based on {z(k)} = {r(k)exp(−jθ̂(k))}. The
detector is designed under the assumption of perfect car-
rier synchronization, i.e., θ̂(k) = θ(k). For uncoded trans-
mission, the detection algorithm reduces to symbol-by-
symbol detection:

â(k) = arg min
a∈A

|z(k) − a|2, k /∈ {ki, i = 0, ..., KP − 1}

with A denoting the symbol constellation.

3. PHASE ESTIMATION ALGORITHM

The phase θ(k) can be represented as a weighed sum of
K basis functions over the interval (0,K − 1).

θ(k) =
K−1∑
n=0

xnψn(k), k = 0, ...,K − 1 (2)

As θ(k) is essentially a lowpass process, it can be well
approximated by the weighed sum of a limited number
N (<< K) of suitable basis functions:

θ(k) ≈
N−1∑
n=0

xnψn(k), k = 0, ...,K − 1 (3)

In this contribution we make use of the orthonormal dis-
crete cosine transform (DCT) basis functions, that are de-
fined as

ψn(k) =


√

1
K n = 0√
2
K cos

(
πn
K

(
k + 1

2

))
n > 0

(4)

Hence, xn is the n-th DCT-coefficient of θ(k). As ψn(k)
has its energy concentrated near the frequencies n

2KT and
− n

2KT , the DCT basis functions are well suited to rep-
resent a lowpass process by means of a small number of
basis functions.

In the following we will produce from the observation
{r(ki)} an estimate {x̂n, n = 0, ..., N − 1} of the co-
efficients {xn, n = 0, ..., N − 1}, using the phase model
(3) with equality. The final estimate θ̂(k) will be obtained
by computing the inverse DCT of {x̂n}:

θ̂(k) =
N−1∑
n=0

x̂nψn(k) for k = 0, ...,K − 1 (5)

However, as (3) is not an exact model of the true phase
θ(k), the phase estimate will be affected not only by the
additive noise contained in the observation, but also by a
phase noise modeling error. Considering the observations
(1) at instants ki, and assuming that (3) holds with equal-
ity, we obtain:

rP = D(x)aP + wP (6)

where, for i = 0, ...,KP − 1; (rP )i = r(ki), (wP )i =
w(ki), (aP )i = a(ki) and D(x) is a KP xKP diagonal
matrix with

(D(x))i = ej(ΨPx)i (7)

and (ΨP)i,n = ψn(ki), (x)n = xn, n = 0, ..., N − 1
with N ≤ KP .

Maximum likelihood estimation of x from rP results in

x̂ML = argmin
x

|rP −D(x)aP|2 (8)

As x enters the observation rP in a non-linear way, the
ML estimate is not easily obtained. Therefore, we resort
to a suboptimum ad-hoc estimation of x, which is based on
the argument (angle) of the complex-valued observations.
However, as the function arg(z) reduces the argument of
z to an interval (−π, π), taking arg(r(ki)) might give rise
to phase wrapping, especially when the static phase offset
θ0 is close to −π or π. In order to reduce the probability
of phase wrapping, we first rotate the observation r over
an angle θavg that is close to the time-average of θ(k),
then we estimate the DCT coefficients of the fluctuation
θ(k) − θavg and finally, we compute the phase estimate
θ̂(k). We select

θavg = arg

Kp−1∑
i=0

r(ki)

 (9)

and construct r′ with

(r′)i = arg(r(ki)a∗(ki)exp(−jθavg)) (10)

We obtain an estimate x̂′ of the DCT coefficients of the
fluctuation θ(k) − θavg through a least-squares fit x̂ =
argminx |r′ −ΨPx|2, yielding:

x̂′ = (ΨP
T ΨP)−1ΨP

T r′ (11)

In order that (ΨP
T ΨP)−1 exists, we need N ≤ KP . Fi-

nally, the phase estimate is given by

θ̂ = θavg1 + ΨKx̂′ (12)



with (θ̂)k = θ̂(k), (1)k = 1, (ΨK)k,n = ψn(k), k =
0, ...,K − 1;n = 0, ..., N − 1. In order to avoid matrix
inversion in (11), we select the positions ki of theKP pilot
symbols such that ΨP

T ΨP is diagonal. In other words,
the functions ψn(ki) must form N orthogonal functions
of length KP . Let us consider the DCT basis functions
φn(i) of length KP . By selecting

ki =
K(2i+ 1)−KP

2KP
(13)

we obtain

ψn(ki) =

√
KP

K
φn(i) for n = 0, ...,KP (14)

so that ΨP
T ΨP = KP

K IN , with IN denoting the NxN
identity matrix. When (13) holds, (11) and (12) reduce to

x̂′ =
K

KP
ΨP

T r′ (15)

θ̂ = θavg1 +
K

KP
ΨKΨP

T r̂′ (16)

Note from (16) that the estimation algorithm does not need
specific knowledge about the phase noise process. In or-
der that ki from (13) be integer, K must be an odd mul-
tiple of KP . However, when K is not an odd multiple of
KP , rounding the right-hand side of (13) to the nearest in-
teger gives rise to pilot symbol positions that still yield an
essentially diagonal matrix ΨP

T ΨP.

4. PERFORMANCE ANALYSIS

As the observation vector rP is a nonlinear function of the
carrier phase, an exact analytical performance analysis is
not feasible. Instead, we will resort to a linearization of
the argument function in (10) in order to obtain tractable
results.
Linearization of the argument function yields

r′(i) = arg(r(ki)a
∗(ki)e

−jθavg ) (17)

= θ(ki) − θavg + nP (i), i = 0, ..., KP − 1 (18)

where {nP (i)} is a sequence of i.i.d. zero-mean Gaussian
random variables with variance N0

2Es
. Note that (18) in-

corporates the true phase θ(ki) instead of the approximate
model (3), so that our performance analysis will take the
modeling error into account. Substituting (18) into (16)
and using ΨT

P ΨP = KP

K IN yields

θ̂ =
K

KP
ΨKΨT

P (θP +nP ) (19)

with (nP )i = nP (i) and (θP )i = θ(ki). If the model (3)
were exact, we would have θ = ΨKx and θP = ΨPx
yielding

θ̂ = θ +
K

KP
ΨKΨT

P nP (20)

in which case the estimation error would be caused only
by the additive noise.

As a performance measure of the estimation algorithm we
consider the mean-square error (MSE), defined as

MSE =
1
K
E

[
|θ̂ − θ|2

]
(21)

Substituting (19) into (21) yields

MSE =
N0

2Es

N

KP
+MSE∞ (22)

The first term in (22) denotes the contribution from the ad-
ditive noise, whereas the second term in (22) constitutes
a MSE floor, caused by the phase noise modeling error.
Note that the noise contribution to the MSE is propor-
tional to N (because N parameters need to be estimated),
whereas the MSE floor decreases with increasing N (be-
cause the modeling error is reduced when more DCT co-
efficients are taken into account). Hence, there is an opti-
mum value of N that minimizes the MSE; this optimum
value depends on Es

N0
,K,KP and the phase noise statis-

tics.
From the nonlinear observation model (6), which assumes
that (3) holds with equality, we compute the Cramer-Rao
lower bound on the MSE (21) resulting from any unbiased
estimate x̂ of the DCT coefficients of θ(k) :

MSE ≥ 1
K
tr

(
J−1

)
(23)

In (23), J denotes the Fisher information matrix related to
the estimation of x from (6), which is found to be :

(J)n,n′ =
2Es

N0

K

KP
δn−n′ (24)

Combining (23) with (24) yields the following performance
bound:

MSE ≥ N0

2Es

N

KP
(25)

Comparison of (25) and (22) indicates that our ad hoc al-
gorithm (16) yields the minimum possible (over all unbi-
ased estimates) noise contribution to the MSE (assuming
that the linearization of the observation model is valid).

5. NUMERICAL RESULTS

In this section we assess the performance of the proposed
technique in terms of the MSE of the phase estimate and



1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30 35

Es/N0 (dB)

M
S

E
 (

ra
d

2
)

N = 1

N = 4

N = 7

N = 16

K = 220

P = 20

Wiener phase noise with 

 σδ= 3 degrees

Figure 1: MSE for Wiener phase noise with σδ ≈ 3◦.

the resulting BER degradation by means of computer sim-
ulations.
First, we assume transmission of a total block of length
K = 220 symbols, consisting of 200 uncoded QPSK data
symbols and KP = 20 constant-energy pilot symbols that
are inserted into the data sequence according to (13).
We consider the presence of Wiener phase noise:

θ(k) = θ(k − 1) + δ(k) (26)

where {δ(k)} is a sequence of i.i.d. zero-mean Gaussian
increments with variance σ2

δ . From (26) it follows that the
variance of the Wiener phase noise increases linearly with
the time index k.
Figure 1 shows the MSE of the phase estimate, assum-
ing that the increment of the Wiener phase noise over a
symbol interval has variance σ2

δ = 0.0027 rad2 (which
corresponds to σδ ≈ 3◦). From figure 1 it is obvious that
there is a MSE floor in the high-SNR region which can be
reduced by increasing the number N of estimated coeffi-
cients. We also observe that for low SNR the MSE curve is
approximately inversely proportional to Es

N0
, which agrees

with (22).
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Figure 2: BER performance of the algorithm in the presence of Wiener
phase noise with σδ ≈ 3◦.

Figure 2 shows the bit-error rate (BER) which is affected
by the residual phase noise. The reference curve corre-
sponds to a system with perfect synchronisation and no pi-
lot symbols. We observe that for (very) low SNR values,
it is sufficient to estimate only one DCT coefficient. In
the high-SNR region, a BER floor occurs which decreases
with increasing N , so it becomes beneficial to estimate
more than just one DCT coefficient.
Figure 3 shows the BER-degradation at BER = 10−4

with respect to the reference system, for a fixed ratio η =
KP

K = 10% . The BER degradation is caused not only
by the residual phase noise, but also by the loss of power
efficiency due to the insertion of pilot symbols into the
sequence of information symbols; the latter BER degra-
dation (in dB) amounts to about 0.46 dB for η = 10%.
The following observation can be made:

• For given block size K, there is an optimum num-
ber Nopt of DCT coefficients to be estimated, that
minimizes the BER degradation. This is consistent
with the observation that the MSE of the phase es-
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timate can be minimized by a suitable choice of N .

• For very small K, Nopt = 1. The optimum value
Nopt increases with increasing K, because more
DCT coefficients are needed to model the phase fluc-
tuations when K gets larger. Keeping N = 1 yields
very large degradations when K increases.

• The BER degradation that corresponds toN = Nopt

exhibits a (broad) minimum as a function of K. As
long as the fluctuation of θ(k) about its time average
is small so that linearization of the argument func-
tion in (10) applies, the degradation decreases with
increasing K, because more noisy observations of
the phase noise are available. However, for too large
K the fluctuaction of the Wiener phase noise is so
large that linearization is no longer valid and the re-
sulting degradation increases with increasing K.

For the considered scenario, the minimum degradation oc-
curs at (Kopt, Nopt) ≈ (400, 13) and amounts to about
2.3 dB. When the actual block size K exceeds Kopt, the

degradation can be limited by dividing the block in sub-
blocks of at most Kopt symbols, and estimating the phase
for each subblock separately.

6. CONCLUSIONS AND REMARKS

In this contribution we have considered an ad hoc data-
aided phase noise estimation algorithm that is based on
the estimation of only a few (N) coefficients of the DCT
basis expansion of the time-varying phase. The algorithm
does not require detailed knowledge about the phase noise
statistics. Linearization of the observation model has indi-
cated that the mean-square error of the resulting estimate
consists of an additive noise contribution (that increases
with N ), and a MSE floor caused by the phase noise mod-
eling error (that decreases withN ). The noise contribution
coincides with the Cramer-Rao lower bound.
These analytical findings have been confirmed by means
of computer simulations. The numerical results illustrate
that the MSE of the phase noise estimate and the asso-
ciated BER degradation can be minimized by a suitable
choice of K and N . For large K, substantial improvement
is obtained as compared to the case where only the time-
average of the phase is estimated (i.e. N = 1).
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