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Abstract - An efficient Multilevel Fast Multipole Algorithm
(MLFMA) for the modeling of very large planar microwave
circuits is presented. The method relies on an Electric Field
Integral Equation (EFIE) formulation and a series expansion
of the pertinent Green dyadic, based on the use of Perfectly
Matched Layers (PML). The new PML-MLFMA is imple-
mented in order to accelerate the numerous matrix-vector
multiplications appearing in the iterative solution of the prob-
lem. The computational and memory complexity of the al-
gorithm scale down toO(N) for electrically large structures.
The method is illustrated by means of illustrative, numerical
examples.

Keywords— microstrip structure, planar antenna array, per-
fectly matched layer, multilevel fast multipole algorithm.

I. INTRODUCTION

Full-wave, Method of Moments (MoM) [HAR 93] based
electromagnetic field solvers are very popular tools for
modeling planar microwave structures. Central to their
operation are the so-called Green functions [TAI 93] that
characterize the fields produced by spatially impulsive
sources in the layered medium in which the microstrip met-
allization resides. By using these layered medium Green
functions, MoM solvers only need to discretize the elec-
tric currents on the metallic conductors. ForN discretiza-
tions the MoM yields anN × N linear system of equa-
tions. Although these methods are very accurate, they have
some important drawbacks. First, the calculation of the
Green functions calls for the time-consuming evaluation
of Sommerfeld-type integrals [FAC 93]. Second, because
of the nonsparse character of the moment matrix, build-
ing and storing the linear system requires CPU and mem-
ory resources of orderO(N2). The operation count for
solving this system is ofO(pN2) when using an iterative
method,p being the number of iterations. As a result, clas-
sical MoM tools for characterizing microstrip structures are
computationally expensive and scale poorly with the num-
ber of unknowns.
Here we present a fast and accurate technique that effec-
tively resolves the above problems. First, the Perfectly
Matched Layer (PML) paradigm is used to represent mul-
tilayered Green functions as a modal expansion [OLY 03].
Second, this modal expansion allows for the implementa-
tion of a multilevel fast multipole-like scheme. The CPU
demands and memory requirements of the resulting scheme
scale asO(N) for dense metallizations. A similar formal-
ism for analyzing 2-D microstrip structures has also been
implemented [Van 04].
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Fig. 1. Geometry

II. GEOMETRY OF THE PROBLEM

The microstrip configurations considered herein consist of
a substrate with thicknessd, permittivity ǫr, and perme-
ability µr, that is backed by a perfect electrically conduct-
ing (PEC) ground plane. On top of the substrate PEC
microstrip elements comprised of traces and patches are
printed. Antenna arrays are a typical example of con-
figurations with a dense metallization (Fig. 1). The new
technique is also suited for other applications, such as
the modeling of reflectarrays [POZ 97], frequency selec-
tive surfaces [MIT 88], [KIP 94], and diffraction grat-
ings [BLE 97]. The structure can be excited by an illu-
minating plane wave or by port sources. The goal is to
analyze radiation and scattering by/from this structure.

III. THEORY OF THE NEW FORMALISM

To this end, an Electrical Field Integral Equation (EFIE) is
constructed for the electric currents:

[

Einc
x (x, y, d)

Einc
y (x, y, d)

]

= −

∫∫

S

Gee(x, y|x′, y′) ·

[

Jx(x′, y′, d)
Jy(x′, y′, d)

]

dx′ dy′

(1)
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HereGee is the pertinent electrical-electrical Green dyadic
described below. The integration extends over all mi-
crostrip elements, i.e. the metallizationS. Einc is the
known part of the equation, dependent on the excitation of
the circuit. To solve the above EFIE a MoM technique is
adopted. The current is expanded inN rooftop basis func-
tion and by Galerkin weighting anN × N linear system is
achieved.

A. Green dyadic with the use of a PML

Instead of numerically calculating Sommerfeld-integralsto
obtain the Green dyadic, the PML concept is invoked lead-
ing to an approximateanalytical expression for the fields
produced by spatially impulsive sources in a multilayered
background. In [OLY 03] it is shown that by terminating
the air half space with a PML backed by a PEC, the mi-
crostrip structure is converted into a closed waveguide —
characterized by adiscretemodal spectrum — that closely
mimics the behavior of the original, open structure. The
air-PML-combination can be seen as one single layer with
complex thickness̃D, which is a simple function of the
geometry and the material parameters of the layers. The
Green dyadic for a horizontal dipole source at(x′, y′, d)
can now be expressed as a series of TM- and TE-modes of
the closed waveguide as:
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with ρ =
√

(x − x′)2 + (y − y′)2, the distance between
source and observer. The first and second summation
range over all TM- and TE-modes respectively. In addi-
tion, theλTM,n andλTE,n are the propagation constants of
these modes. They satisfy the TM- or TE-dispersion rela-
tion of the PEC-dielectric-air-PML-PEC waveguide. The
MTM and MTE are simple functions of these propaga-
tion constants and the material parameters of the struc-
ture [OLY 03]. In practical applications, only a limited
number of modes is used owing to the fact that the prop-
agation constants of the higher order modes have a large
negative imaginary part. The expansion (2) becomes im-
practical for smallρ, say λ

20 . Hence, for near interactions,
a classical technique for evaluating the Green operator re-
mains in order.

B. Implementation of an MLFMA in the MoM-PML-
formalism

B.1 Plane wave decomposition of the Hankel function

Fast Multipole Methods (FMM) rely on plane wave decom-
positions of Helmholtz equation Green functions to rapidly
evaluate fields generated by spatially distributed sources.
Here, the focus is on the decomposition of the above 2-D
kernel of the Green dyadic, viz. the Hankel function. The
sources are divided in groups. Consider a source group
with centerρc

s in which a dipole source resides atρs. The
field at the observerρo in the observer group with center
ρc

o is desired. R is the radius of the groups. It can be
shown easily that the kernel can be expressed as [CHE 03],
[CHE 01]:
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with

ρso = ρo − ρs, ρcc
so = ρc

o − ρc
s, φcc

so = arctan(
x̂ · ρcc

so

ŷ · ρcc
so

),

and λ(φq) = λ(cos φq x̂ + sin φq ŷ). This equation re-
alizes a plane-wave decomposition of the Hankel func-
tion. The radiation pattern of the source group is sam-
pled in 2Q + 1 outgoing plane waves in the directions
φq = 2qπ

2Q+1 , q = −Q, . . . , Q., and referenced w.r.t. the
center of the source group. Next, these are converted into
2Q + 1 incoming plane waves referenced w.r.t. the center
of the observation group upon multiplication by the trans-
lation operator (4). Then the contribution of each plane
wave is projected onto the observer. The sampling rate is
2Q + 1 = 4|λ|R + C, whereC (approximately) is a con-
stant to ensure convergence. This expansion is valid when
the source group and the observer group are well-separated,
meaning e.g.|ρcc

so| > 5R.

B.2 Combination of the PML-paradigm with the MLFMA

The reader is encouraged to consult references [DEM 95],
[EPT 95], [SON 95], [SON 97] to gain familiarity with
basic MLFMA schemes for free space environments. In
what follows, only some details pertinent to the adoption
of PMLs in the algorithm are presented.



Consider a dipole source with strengthα = αxx̂ + αyŷ

located atρs = (xs, ys, d), i.e. at the substrate-air inter-
face. We want to know the field radiated by this source in
an observer placed atρo = (xo, yo, d). By using (1), (2),
and (3) it is easy to see that this field is given by:

E(ρo) =
1

2ω
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(5)

wherer̂q = cos φq x̂ + sin φq ŷ and φ̂q = − sin φq x̂ +
cos φq ŷ.
Now we consider the classical MoM interactions (which
are quadruple integrals) between a basis and a test func-
tion as weighted sums of interactions between the set of
dipoles by which they are described in a Gaussian quadra-
ture rule. The strength of the MLFMA is precisely to cal-
culate the far interactions between these dipoles in a very
fast way. We organize all the dipoles in a typical MLFMA-
tree. This tree, together with (5), allows the fast multiplica-
tion of the system matrix with a test vector, as is needed in
an iterative solver. It also limits the memory requirements
drastically. For a dense metallization a quad tree can be
build, resulting in a memory and computational complex-
ity of O(N) [CHE 01].

IV. NUMERICAL EXAMPLES

In Figs. 2 and 3 respectively the operation count and the
memory requirement are plotted. The new method clearly
scales much better than a classical one,O(N) instead of
O(N2). Also important is to mention that the cross-over
points, where the new method starts to perform better than
the classical one, are already found at a very low number
of unknownsN .
In the metallization of Fig. 1, patches are spaced equidis-
tant from each other at a distanceT = 3λ0/4, with λ0 the
free space wavelength. The substrate has a thicknessd =
3.17mm and permittivityǫr = 11.7mm. When a plane
wave under an angle of incidenceθ = 30◦ andφ = 0◦

impinges upon the structure, a grating lobe in the scatter-
ing cross section is expected atθgr = 56.4◦ (apart from the
specular reflection atθspec = −30◦). If an infinite num-
ber of patches is used, a discrete radiation pattern with two
Dirac-like lobes atθgr andθspec is obtained. In Fig. 4 the
scattering cross sections in thexz-plane (φ = 0◦) are plot-
ted for a varying number of square patches. It is readily
seen that with an increasing number of patches, the result
more and more resembles the discrete pattern. The reader

also clearly notices the two predicted lobes atθgr andθspec.

V. CONCLUSIONS

Starting from a classical EFIE formulation solved with the
MoM, an MLFMA is implemented for the fast modeling of
electrically large planar microwave circuits. The technique
is based on the application of PMLs in order to rewrite the
pertinent Green dyadic as a modal expansion. Each term
in this series can be decomposed into plane wave contri-
butions. In this way, a PML-MLFMA is built and it is
shown that a very fast and memory efficient algorithm is
obtained. Both the computational and memory complexity
scale down toO(N). The novel technique is also applied to
the scattering from a large planar array, clearly validating
the capabilities of the method.
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