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Abstract - An efficient Multilevel Fast Multipole Algorithm
(MLFMA) for the modeling of very large planar microwave .
circuits is presented. The method relies on an Electric Field »E\

Integral Equation (EFIE) formulation and a series expansion S «

of the pertinent Green dyadic, based on the use of Perfectly /46
Matched Layers (PML). The new PML-MLFMA is imple- ' ' ' '

mented in order to accelerate the numerous matrix-vector "’

multiplications appearing in the iterative solution of the prob- ’

lem. The computational and memory complexity of the al- ””

gorithm scale down toO(V) for electrically large structures. ”” 2

The method is illustrated by means of illustrative, numerical £, 1

examples. dI ol Yy
X

Keywords— microstrip structure, planar antenna array, per-

fectly matched layer, multilevel fast multipole algorithm. Fig. 1. Geometry

I. INTRODUCTION

Full-wave, Method of Moments (MoM) [HAR 93] based

electromagnetic field solvers are very popular tools for ll. GEOMETRY OF THE PROBLEM
modeling planar microwave structures. Central to their
operatlon_are the §o-called Green functlon_s [TA.I 93] thai'he microstrip configurations considered herein consist of
characterize the fields produced by spatially impulsive

: S . . . substrate with thicknesg permittivity ¢,, and perme-
sources in the layered medium in which the microstrip met-, . .
o ) : : ability 1., that is backed by a perfect electrically conduct-
allization resides. By using these layered medium Green
. . . ing (PEC) ground plane. On top of the substrate PEC
functions, MoM solvers only need to discretize the elec-

. : ; . microstrip elements comprised of traces and patches are
tric currents on the metallic conductors. Herdiscretiza- finted.  Antenna arravs are a tvoical examole of con-
tions the MoM yields anV x N linear system of equa- P ' Y yp P

tions. Although these methods are very accurate, they h Ugurayons .W'th a depse metallization (F.'g' .1)' The new
. ! . echnique is also suited for other applications, such as

some important drawbacks. First, the calculation of th .
. . ) . the modeling of reflectarrays [POZ 97], frequency selec-
Green functions calls for the time-consuming evaluation ) .
. tive surfaces [MIT 88], [KIP 94], and diffraction grat-
of Sommerfeld-type integrals [FAC 93]. Second, because . .
. . 1ngs [BLE 97]. The structure can be excited by an illu-

of the nonsparse character of the moment matrix, build-

ing and storing the linear system requires CPU and merrqr-]Inatlng plane wave or by port sources. The goal is to

ory resources of ordep(N2). The operation count for analyze radiation and scattering by/from this structure.
solving this system is o®(pN?) when using an iterative
method p being the number of iterations. As a result, clas-
sical MoM tools for characterizing microstrip structures a
computationally expensive and scale poorly with the num- ] ) ) ) )
ber of unknowns. To this end, an Electrical Field Integral Equation (EFIE) is
Here we present a fast and accurate technique that eff&@nstructed for the electric currents:

tively resolves the above problems. First, the Perfectly
Matched Layer (PML) paradigm is used to represent mul- [

I1l. THEORY OF THE NEW FORMALISM

tilayered Green functions as a modal expansion [OLY 03].
Second, this modal expansion allows for the implementa-
tion of a multilevel fast multipole-like scheme. The CPU
demands and memory requirements of the resulting scheme _ _ // Eee(x, yla' o) - [
scale a®)(N) for dense metallizations. A similar formal- s

ism for analyzing 2-D microstrip structures has also been

implemented [Van 04]. )
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HereG.,. is the pertinent electrical-electrical Green dyadiB. Implementation of an MLFMA in the MoM-PML-
described below. The integration extends over all mi- formalism

crostrip elements, i.e. the metallizatigh E™° is the » .
known part of the equation, dependent on the excitation &1 Plane wave decomposition of the Hankel function

the circuit. To solve the above EFIE a MoM technique ig-ast Multipole Methods (FMM) rely on plane wave decom-
adopted. The current is expanded\Vnrooftop basis func- positions of Helmholtz equation Green functions to rapidly
tion and by Galerkin weighting alv x NN linear system is evaluate fields generated by spatially distributed sources

achieved. Here, the focus is on the decomposition of the above 2-D
kernel of the Green dyadic, viz. the Hankel function. The
A. Green dyadic with the use of a PML sources are divided in groups. Consider a source group

. . . with centerp¢ in which a dipole source resides@at. The
Instead of numerically calculating Sommerfeld-integtals field at the observep, in the observer group with center
obtain the Green dyadic, the PML concept is invoked Ieaq,,g is desired. R is the radius of the groups. It can be

ing to an approximatanalytical expression for the fields shown easily that the kernel can be expressed as [CHE 03],
produced by spatially impulsive sources in a multilayeregCHE 01]:

background. In [OLY 03] it is shown that by terminating
the air half space with a PML backed by a PEC, the mi- o
crostrip structure is converted into a closed waveguide — . o e cel see
characterized by discretemodal spectrum — that closely HG (Alpal) = Z M) (P, POTL(N, o5, 65)
mimics the behavior of the original, open structure. The =-Q
air-PML-combination can be seen as one single layer with

complex thicknessD, which is a simple function of the

% e IA@)-(P,—P5)

geometry and the material parameters of the layers. The Q@
Green dyadic for a horizontal dipole source(at,y’, d) = Z PW, (3
can now be expressed as a series of TM- and TE-modes of =-Q
the closed waveguide as:
R e ( )
= T,(\ p, ) = HY (Ap)ed? (#=¢=3) (4
Gee(z,yl2',y") o-p.9) 2Q +1 q/;Q @ ) @
9% 9° .
1 [ 8(93022 83{2@/] H(SQ)O\TM,nP) with
_ dxdy dy? cc X pgg
2w ; A2TM,n MTM()\TMJL) Pso = Po — Ps> ng = pg - Pfi ¢so = arCtan(W)’
3722 _ 2 ) and A(¢,) = A(cosgy%x + sing,y). This equation re-
[ ayaz %ﬁay] Hé )()\TE,np) alizes a plane-wave decomposition of the Hankel func-
+ EZ ~ Oxdy  0a? ) tion. The radiation pattern of the source group is sam-
2 & Mg MTE(\rE, ) pled in 2Q + 1 outgoing plane waves in the directions
Pq = 22‘1% q = —Q,...,Q., and referenced w.r.t. the

center of the source group. Next, these are converted into
with p = /(z —2/)2 + (y — ¢/)?, the distance between 2Q + 1 incoming plane waves referenced w.r.t. the center
source and observer. The first and second summatiéfthe observation group upon multiplication by the trans-
range over all TM- and TE-modes respectively. In addilation operator (4). Then the contribution of each plane
tion, theAry , and A ,, are the propagation constants ofwave is projected onto the observer. The sampling rate is
these modes. They satisfy the TM- or TE-dispersion rel®Q + 1 = 4|A\|R + C, whereC (approximately) is a con-
tion of the PEC-dielectric-air-PML-PEC waveguide. TheStant to ensure convergence. This expansion is valid when
M™ and M™F are simple functions of these propagathe source group and the observer group are well-separated,
tion constants and the material parameters of the stru@eaning e.glpS| > 5R.
ture [OLY 03]. In practical applications, only a limited L i )
number of modes is used owing to the fact that the pr0|[§'2 Combination of the PML-paradigm with the MLFMA
agation constants of the higher order modes have a lar§iae reader is encouraged to consult references [DEM 95],
negative imaginary part. The expansion (2) becomes infEPT 95], [SON 95], [SON 97] to gain familiarity with
practical for smalp, sayz—AO. Hence, for near interactions, basic MLFMA schemes for free space environments. In
a classical technique for evaluating the Green operator reshat follows, only some details pertinent to the adoption
mains in order. of PMLs in the algorithm are presented.




Consider a dipole source with strength= «a,x + o,y  also clearly notices the two predicted lobegatandfp...
located atp, = (zs,ys,d), i.e. at the substrate-air inter-

face. We want to know the field radiated by_ this source in V. CONCLUSIONS

an observer placed at, = (z,,y,,d). By using (1), (2),

and (3) itis easy to see that this field is given by: Starting from a classical EFIE formulation solved with the

MoM, an MLFMA is implemented for the fast modeling of

) . Q electrically large planar microwave circuits. The teclugq
E(p,) = — S PW, i, (&, - @) is based on the application of PMLs in order to rewrite the
2w zn: MTM(Arnn) q;Q me pertinent Green dyadic as a modal expansion. Each term

in this series can be decomposed into plane wave contri-
" 1 Q butions. In this way, a PML-MLFMA is built and it is
et - PW. b (b -« shown that a very fast and memory efficient algorithm is
3 Zn: MTE(Ag,p) q;Q 1 Pa(Py ) obtained. Both the computational and memory complexity
scale down t@)(N). The novel technique is also applied to
(5) the scattering from a large planar array, clearly validatin
the capabilities of the method.
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