New 1-systems of Q(6,q), q even

Deirdre Luyckx¹ Joint work with J. A. Thas

Ghent University, Dept. of Pure Mathematics and Computer Algebra Galglaan 2, B-9000 Ghent, Belgium dluyckx@cage.rug.ac.be

A 1-system \mathcal{M} of the parabolic quadric Q(6,q) in $\mathsf{PG}(6,q)$ is a set $\{L_0, L_1, \ldots, L_{q^3}\}$ consisting of $q^3 + 1$ lines on Q(6,q) having the property that the tangent space of Q(6,q) at L_i has no point in common with $(L_0 \cup L_1 \cup \ldots \cup L_{q^3}) \setminus L_i$, $i = 0, 1, \ldots, q^3$. We will discuss a method to construct new locally hermitian 1-systems of Q(6,q), q even; for q odd, this was already done in [1]. One of these 1-systems is the spread of the hexagon $\mathsf{H}(q)$, $q = 2^{2e}$, which was discovered by A. Offer in [3]. Moreover, we can classify these new 1-systems as the only ones on Q(6,q) which are locally hermitian and semiclassical, but not contained in a 5-dimensional subspace.

Our class of new 1-systems has beautiful applications in a wide range of fields. By projection from the nucleus of Q(6,q) onto a $\mathsf{PG}(5,q)$ not containing the nucleus, every 1-system of Q(6,q), q even, yields a 1-system of $W_5(q)$, hence we have also found a new class of 1-systems of $W_5(q)$. In [2], it is explained that every 1-system of $W_5(q)$ yields a semipartial geometry, while by a corollary in [4], a 1-system of $W_5(q)$ defines a strongly regular graph and a two-weight code. So our new class of 1-systems provides us with new examples of semipartial geometries, strongly regular graphs and two-weight codes.

References

- [1] D. Luyckx and J. A. Thas, Flocks and locally hermitian 1-systems of Q(6,q), In Finite Geometries - Proceedings of the Fourth Isle of Thorns Conference, volume 3 of Developments in Mathematics, 2001, 257 -275.
- [2] D. Luyckx, m-systems of polar spaces and SPG reguli, Bulletin of the Belgian Mathematical Society – Simon Stevin, 2001, to appear.
- [3] A. Offer, Spreads and Ovoids the Split Cayley Hexagon, of University of Adelaide, 2000.second edition, available at http://cage.rug.ac.be/~nick/Theses/theses.html
- [4] E.E. Shult and J.A. Thas, m-systems of polar spaces, J. Combin. Theory Ser. A 68 (1994), 184–204.

 $^{^1 \}rm The author is Research Assistant of the Fund for Scientific Research – Flanders (Belgium) (F.W.O.)$