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Abstract—As an alternative to the use of traditional parallel
hole collimators, SPECT imaging can be performed using rotat-
ing slat collimators. A gain in image quality could be expected
from the higher photon collection efficiency, however, the plane
integral data measured by this type of collimator require a recon-
struction to invert the three-dimensional (3D) Radon transform.
The use of iterative methods to do fully 3D reconstruction is
computationally much more expensive compared to a classical
SPECT reconstruction. A computationally attractive alternative
to direct 3D reconstruction could be to use two subsequent in-
version steps, where the first step would consist of reconstructing
the plane integral data to conventional SPECT sinograms and
the second step would be a classical SPECT reconstruction. In
this work, an algorithm of the Maximum Likelihood Expectation
Maximization (MLEM) type which integrates these two steps into
one algorithm is proposed as an alternative to two subsequent
MLEM reconstructions. A simulation study validates the new
approach with respect to a two step MLEM reconstruction.
Results indicate that the integration of two MLEM iteration loops
into one can provide improved image quality regarding contrast
recovery and noise. Moreover it avoids determining a stopping
rule for the first step in the 2-step approach.

Index Terms—SPECT, image reconstruction.

I. INTRODUCTION

IN SPECT imaging, image quality is limited by the intrinsic

spatial resolution versus sensitivity trade-off resulting from

the geometric properties of parallel hole collimators, which

are traditionally used to obtain photons from the direction

perpendicular to the collimator. While maintaining the same

Field Of View (FOV), rotating slat collimators (RSC) provide

a better spatial resolution versus sensitivity compromise. This

is due to the much higher photon collection efficiency of the

plane integrals, measured by this device. Therefore, RSC can

potentially provide a gain in image quality.

The collection of plane integrals of a 3D activity distribution

by spinning the detector around its own axis at each regular

SPECT angle can be seen as the 3D Radon transform when

ignoring the effects of attenuation, depth dependent blurring

and depth dependent sensitivity. For image reconstruction,

a 3D algorithm which inverts the 3D Radon transform is

mandatory. A Filtered Back-Projection (FBP) implementation

of this 3D Radon inversion has been previously developed by

Lodge [1] and by Zeng [2], an iterative RBI-EM approach

has been proposed by Wang [3]. The iterative approach

offers better noise characteristics, since it models the Poisson

R. Van Holen, S. Vandenberghe, S. Staelens, Y. D’Asseler and I. Lemahieu
are with the Department of Electronics and Information Systems, Ghent
University, B-9000 Ghent, Belgium e-mail: (Roel.VanHolen@UGent.be).

This work was supported in part by the Institute for the Promotion of
Innovation by Science and Technology, Flanders, IWT, Belgium.

statistics of the data while it can also incorporate the effects of

depth dependent blur and sensitivity into the system matrix. A

drawback of the iterative approach is that it is computationally

very expensive which makes it less attractive for practical use.

A computationally less demanding alternative to the 3D Radon

inversion is a 2-step algorithm which first reconstructs the

plane integral data to conventional sinograms before recon-

structing the 3D object from these sinograms using a classical

SPECT reconstruction. This approach has been proved to be

feasible [4], but is less accurate than a fully 3D reconstruction.

In this work we propose a new technique for reconstructing

plane integral data based on an integrated iterative reconstruc-

tion algorithm. The newly developed method differs from the

2-step approach in the sense that both, previously separate

iteration loops, are now integrated in 1 iteration loop as

illustrated in Fig. 1. First, the current image estimate is forward

projected to sinogram data, which are then forward projected

to plane integral data. Next, the ratio of the measured plane

integral data and the forward projected plane integral data

is back projected to sinogram space. At this point, a back

projection to 3D image space is performed, yielding the next

image estimate.

We performed a simulation study to obtain contrast to noise

properties of both a 2-step MLEM (2S-MLEM) reconstruction

and the newly developed Integrated MLEM (I-MLEM). The

computation time will be discussed and compared to a fully

3D algorithm.

II. METHODS

A. Phantom simulation

The data used in this study were generated using a Monte

Carlo simulations. Once the origin and direction of a photon

was calculated using Monte Carlo techniques, the photon

was further tracked geometrically. Both the detector and the

collimator were modeled to be a perfect absorber. Thus, every

photon striking the collimator was discarded while every

photon arriving at the detector was detected. No attenuation

or scatter was modeled, but the data are Poisson distributed.

The plane integral data were simulated to contain a total

of 50 million events. A numerical image quality phantom

was simulated and consisted of a warm cylinder (diameter:

180 mm, height 216 mm), containing 4 hot spheres (diameters:

5.4 mm, 9 mm, 12.6 mm, 16.2 mm) and two cold spheres

(diameters:19.8 mm and 23.4 mm). The sphere-to-background

activity ratio was set 8:1 for the hot spots. In the simulation,

the detector rotated around the phantom in 120 discrete angles,

equally spread over 360◦. At each of these SPECT angles,
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Fig. 1. In the 2S-MLEM reconstruction (a), sequence 1-2 (step A) is the first MLEM algorithm which reconstructs the sinogram data. Once the sinogram
data are reconstructed, the second MLEM algorithm is performed by iterating loop 3-4 (step B). This yields the final 3D image. In the I-MLEM algorithm
(b), 1 iteration involves sequence 1-2-3-4.

the detector rotated around its own axis in 120 discrete spin

angles, again equally spread over 360◦. The detector itself

consisted of 192 by 192 detection elements, each measuring

1.8 mm by 1.8 mm. Parallel to the detector elements in one

direction, a slat with finite width of 0.3 mm was simulated in

between every two neighboring detector pixel rows. The height

of the slats was set to 40 mm, while their length was equal

to the length of the detector, being 345.6 mm. This collimator

configuration results in a collimator spatial resolution of about

5 mm at 10 cm collimator distance. The SPECT rotation radius

of the detector was 18 cm.

B. Image reconstruction

We used 2 different image reconstruction algorithms

based on the Maximum Likelihood Expectation Maximization

(MLEM) algorithm, namely the 2S-MLEM and the I-MLEM

algorithm. These reconstruction methods are illustrated in

Fig. 1. The reason for choosing MLEM is to avoid interference

of any extra reconstruction parameters (such as the number of

subsets when using OSEM).

1) 2S-MLEM: The first step of the algorithm (step A)

involves a calculation of the sinogram data, independently for

every fixed SPECT angle θ using MLEM:
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∑
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and where st
i is the estimate at iteration t of the sinogram data

at bin i, gj are the observed plane integral data at projection

bin j and Aij is the system matrix that models the step to

go from sinogram data to plane integral data. We want every

SPECT angle to be treated separately, so Aij is zero if i and j

do not correspond to the same SPECT angle θ (i.e. θi 6= θj).

In system matrix A, we do not include any sensitivity model-

ing. This can be justified since the sensitivity in a plane parallel

to the detector is quite uniform, in contrasts to the cos α

dependency when a strip detector is used [4]. Moreover, the

resolution which is only dependent on the source to collimator

distance, will not be modeled in this step.

After performing T iterations of this first step, the obtained

sinogram is used as an input for the second step. This step (step

B) is analogous to the first except for the system matrix Bki

which includes both a model for depth dependent sensitivity

and depth dependent blur. This matrix models the contribution

from image voxels to sinogram elements. This is similar to a

classical 3D SPECT reconstruction, except for the sensitivity

modeling. The algorithm can be written as:
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with

s̄t
i =

∑

n

Bnif
t
n, (4)

where f t
k is the object estimate at iteration t of voxel k, sT

i are

the sinogram data at bin i, obtained by iterating the previous

step T times.

The main problem with this method is the determination of T ,

or in other words, to define a stopping rule for the first MLEM

algorithm. If T is chosen too small, we can never reach the

desired contrast in the images produced by step B. If, on the

other hand, T is chosen too high, the output of step B would

immediately be too noisy. In this study, the stopping rule will

be derived empirically for the phantom under consideration.

Step A will be stopped at different iteration points before step

B reconstruction. On the resulting images, a contrast to noise

analysis will point us to the optimal number T .

2) Integrated MLEM: The integration of both steps in one

iteration loop results in an algorithm of the form
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The main difference with the previous method is that when

integrating both iteration loops, the estimate of the sinogram

data sj at SPECT angle θ is dependent not only on gj at

that angle θ, but on the complete plane integral data. With

this method, the data are kept more consistent in the sense

that the all data now are used to provide information on each

SPECT angle through the iteration process. In step A of the

2S-MLEM, only the data measured at SPECT angle θ provide

information on SPECT angle θ of sj .

III. RESULTS

A. Determination of T

To determine the number of iterations for step A in the

2S-MLEM reconstruction, step A was stopped at 4 different

iteration points: for T equal to 25, 50, 75 and 100. All four

sinograms were reconstructed using step B. A contrast to noise

analysis on the largest hot lesion in the images resulting from

step B (Fig. 2) shows that for T > 50, the noise increases

without substantially improving the contrast.

On the other hand, we can see that the contrast for T = 25

is limited because step A did not converge yet. Since these

findings can be extrapolated to the other lesions, T = 50 is

chosen for further comparison with the I-MLEM algorithm.

Fig. 2. Contrast to noise plot for different values of T (for 16.2 mm diameter
hot lesion). It can be seen from this plot that the best contrast noise trade-off
is found for T = 50.

B. Comparison of 2S-MLEM and I-MLEM

The 2S-MLEM (50 iterations of the first step) and I-MLEM

reconstruction techniques are compared by means of contrast

to noise plots for both the 16.2 mm diameter hot lesion and

the 23.4 mm diameter cold lesion. Results are shown in Fig. 3

and Fig. 4 respectively. Every fifth iteration is plotted as a

discrete point, starting from iteration number 5. It can be seen

that for a noise level of about 40%, we need about 20 step B

iterations for the 2S-MLEM while we need about 40 iterations

of the I-MLEM algorithm. At this point, the hot spot and

cold spot contrast reached are respectively aboutby 8% and

13% higher for the I-MLEM compared to 2S-MLEM. Similar

improvements were found for the other lesion sizes. In Fig. 5,

transversal slices through the reconstructed images are shown

together with a central profiles. The noise in both images

was matched at 40%. The slight increase in contrast recovery

appears as a lower background activity in the I-MLEM slice.

The profile show that especially for the cold lesion, the contrast

is better for the integrated reconstruction method.

Fig. 3. Contrast noise plot for 16.2 mm diameter hot lesion. The contrast
reached by the I-MLEM is about 8% higher than the contrast reached by the
2S-MLEM method.
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Fig. 4. Contrast noise plot for for 23.4 mm diameter cold lesion. The contrast
improves with about 13% for the integrated method.

(a) (b)

(c)

Fig. 5. (a) and (b) respectively show a transversal slice through the 2S-
MLEM reconstructed image and through the I-MLEM reconstructed image.
Profiles profile drawn across the central horizontal line are shown in (c).

C. Computation time

The computation time required for one iteration of I-MLEM

is about 18 minutes. This is equal to the time required for

one iteration of both steps in 2S-MLEM (Fig. 6). The reason

for this is that both algorithms use the same projector/back

projector pairs. For comparison, the reconstruction time for

one iteration of our fully 3D MLEM algorithm is also plotted.

It can be seen that the speed up by using a two step algorithm

instead of a real 3D algorithm reduces the computation time

with two orders of magnitude.

IV. DISCUSSION

Reconstructing plane integral data based on a 2-step ap-

proach is a computationally attractive alternative to fully 3D

reconstruction. The problems concerning the stopping rule of

Fig. 6. The computation time for one iteration of 2S-MLEM and I-MLEM
is shown together with the time required for one fully 3D iteration.

the first step when using iterative reconstruction methods how-

ever limit the flexibility of this approach since this parameter is

object and activity dependent. The integration of both MLEM

loops, replacing the two separate reconstructions, cancels out

this problem. Furthermore, due to the data that are kept more

consistent, an improved contrast versus noise balance could be

obtained by integrating both steps. Since matrix Bki includes

both sensitivity and resolution modeling, the computation time

of the projections and back projections associated with it

will be dominating the computation time. Therefore, for the

phantom used in this study, where we need more iterations

of the I-MLEM than for the 2S-MLEM reconstruction, the I-

MLEM will take more computation time (about the double)

than the 2S-MLEM method. However, looking at the huge

gain in speed compared to a fully 3D algorithm, this increase

in computation time for I-MLEM is small.

V. CONCLUSION

In this paper we show that a 2-step MLEM algorithm can

be successfully replaced by an algorithm which integrates both

MLEM reconstructions. Not only did we see an increase in

image quality arising from the integration, we also avoided the

problems concerning the stopping rule for the first step in a 2-

step MLEM approach. The reduction of the computational bur-

den associated with a fully 3D MLEM reconstruction, which

was the motivation for this work, seemed to be successful. A

reduction in computation time by two orders of magnitude

could be obtained. Future work will show how the image

quality of I-MLEM compares to that of fully 3D MLEM.
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