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Abstract A Regge-plus-resonance (RPR) description of the p(γ, K)Y and p(e, e′K)Y processes (Y =
Λ, Σ0,+) is presented. The proposed reaction amplitude consists of Regge-trajectory exchanges in the
t channel, supplemented with a limited selection of s-channel resonance diagrams. The RPR framework
contains a considerably smaller number of free parameters than a typical effective-Lagrangian model. Nev-
ertheless, it provides an acceptable overall description of the photo- and electroproduction observables over
an extensive photon energy range. It is shown that the electroproduction response functions and polariza-
tion observables are particularly useful for fine-tuning both the background and resonance parameters.

PACS. 11.10.Ef Lagrangian and Hamiltonian approach 12.40.Nn Regge theory, duality, absorptive/optical
models 13.60.Le Meson production 14.20.Gk Baryon resonances with S=0

1 Introduction

Recent measurements performed at the JLab, SPring-8,
ELSA and GRAAL facilities have resulted in an exten-
sive set of precise p(γ, K)Y [1–7] and p(e, e′K)Y [8–10]
data in the few-GeV regime. These experimental achieve-
ments have motivated renewed efforts by various theoret-
ical groups. A great deal of attention has been directed
towards the development of tree-level isobar models, in
which the scattering amplitude is constructed from a se-
lection of lowest-order Feynman diagrams [11–16], as well
as to coupled-channels approaches [17–19]. While the lat-
ter successfully address a number of issues, the multitude
of parameters involved constitutes a complicating factor.
It is therefore our opinion that ambiguities related to, for
example, form factors, gauge-invariance restoration, or pa-
rameterization of the background, can be addressed more
efficiently at the level of the individual channels.

In Refs. [20, 21], a tree-level effective-field model was
developed for KY (Y = Λ, Σ0,+) photoproduction from
the proton. It differs from traditional isobar models in its
description of the background contribution to the ampli-
tude, which involves the exchange of a number of kaonic
Regge trajectories in the t channel, an approach pioneered
by Guidal and Vanderhaeghen [22]. To this Regge back-
ground, we added a number of resonant contributions.
Such a “Regge-plus-resonance” (RPR) strategy has the
advantage that the background contribution involves only
a few parameters, which can be largely constrained against
the high-energy data. Furthermore, the use of Regge prop-
agators eliminates the need to introduce strong form fac-
tors in the background terms, thus avoiding the gauge-

invariance issues plaguing traditional effective-Lagrangian
models [19].

In this work, the RPR prescription from Refs. [20, 21]
is applied to the electroproduction processes p(e, e′K+)Λ,
Σ0. It will be demonstrated that the electroproduction re-
sponse functions are particularly useful for fine-tuning cer-
tain model choices which the photoproduction data failed
to determine unambiguously.

2 Constructing the RPR amplitude

2.1 Background contributions

Regge theory rests upon the proposition that, at ener-
gies where individual resonances can no longer be distin-
guished, the reaction dynamics are governed by the ex-
change of entire Regge trajectories rather than of single
particles. This high-energy approach applies in particular
to the forward or backward angular ranges, corresponding
to t- or u-channel exchanges, respectively. This work fo-
cuses on the forward-angle kinematical region which, for
electromagnetic KY production, implies the exchange of
kaonic trajectories in the t channel.

An efficient way to model trajectory exchanges in-
volves embedding the Regge formalism into a tree-level
effective-field model [22]. The amplitude for t-channel ex-
change of a linear kaon trajectory

αX(t) = αX,0 + α′

X (t − m2
X) , (1)
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with mX the mass and αX,0 the spin of the trajectory’s
lightest member (or “first materialization”) X , can be ob-
tained from the standard Feynman amplitude by replacing
the Feynman propagator with a Regge one:

1

t − m2
X

−−→ P
X
Regge[s, αX(t)] . (2)

The Regge amplitude can then be written as

M
X
Regge(s, t) = P

X
Regge[s, αX(t)] × βX(s, t) , (3)

with βX(s, t) the residue of the original Feynman ampli-
tude, to be calculated from the interaction Lagrangians at
the γ(∗)KX and pXY vertices.

In our treatment of K+Λ and K+Σ0 photoproduc-
tion [20,21], we identified the K(494) and K∗(892) trajec-
tories as the dominant contributions to the high-energy
amplitudes. The corresponding propagators assume the
following form [23]:

P
K(494)
Regge (s, t) =

(

s

s0

)αK(t)
1

sin
(

παK(t)
)

×
πα′

K

Γ
(

1 + αK(t)
)

{

1
e−iπαK(t)

}

, (4)

P
K∗(892)
Regge (s, t) =

(

s

s0

)αK∗ (t)−1
1

sin
(

παK∗(t)
)

×
πα′

K∗

Γ
(

αK∗(t)
)

{

1
e−iπαK∗ (t)

}

, (5)

with trajectory equations given by αK(t) = 0.70 (t−m2
K),

αK∗(t) = 1+0.85 (t−m2
K∗) [20]. For each of these propa-

gators, a constant (1) or rotating (e−iπα(t)) phase can be
selected.

It is argued in Ref. [22] that, for the sake of current
conservation, the amplitude for the charged-kaon channels
should include the electric (∼ eNγµNAµ) contribution to
the s-channel Born term:

MRegge (γ(∗) p → K+Λ, Σ0) = M
K+(494)
Regge +

M
K∗+(892)
Regge + M

p,elec
Feyn × P

K+(494)
Regge × (t − m2

K+). (6)

Eq. (6) applies to electro- as well as photoproduction. It
turns out that the measured Q2 behaviour of the σL/σT

ratio can only be reproduced provided that the same form
factor is used at the γ∗pp and γ∗K+K+ vertices [22]. The
unknown coupling constants and trajectory phases con-
tained in MRegge are determined from the high-energy
p(γ, K+)Y data.

A monopole electromagnetic form factor is assumed for
the K+(494) and K∗+(892) trajectories, with cutoff values
chosen so as to optimally match the high-Q2 behavior of
the Λ and Σ0 electroproduction data: ΛK+ = ΛK∗+ =
1300 MeV.

2.2 Resonance contributions

Although Regge phenomenology is a high-energy tool by
construction, the experimental meson production cross sec-
tions are observed to exhibit Regge behavior for photon
energies as low as 4 GeV. Even in the resonance region,
the order of magnitude of the forward-angle pion and kaon
electromagnetic production observables is remarkably well
reproduced in the Regge model [22].

It is evident, though, that a pure background ampli-
tude cannot be expected to account for all aspects of the
reaction dynamics. At low energies, the cross sections re-
flect the presence of individual resonances. These are in-
corporated into the RPR framework by supplementing the
reggeized background with a number of resonant s-channel
diagrams. For the latter, standard Feynman propagators
are assumed, in which the resonances’ finite lifetimes are
taken into account through the substitution

s − m2
R −→ s − m2

R + imR ΓR (7)

in the propagator denominators, with mR and ΓR the
mass and width of the propagating state (R = N∗, ∆∗).

Further, the condition is imposed that the resonance
amplitudes vanish at large values of ωlab. This is accom-
plished by including a Gaussian hadronic form factor F (s)
at the KY R vertices:

F (s) = exp

{

−
(s − m2

R)2

Λ4
res

}

, (8)

A single cutoff mass Λres is assumed for all resonances.
Along with the resonance couplings, Λres is used as a
free parameter when optimizing the model against the
resonance-region data. Our motivation for assuming a Gaus-
sian shape is explained in Ref. [20].

The leading diagrams contributing to the reaction am-
plitude are assumed identical for the photo- and electroin-
duced processes, as are the various model parameters. In-
stead of employing the standard phenomenological dipole
parameterization, we calculate all electromagnetic N∗ and
∆∗ form factors in the context of the Lorentz-covariant
constituent-quark model (CQM) developed by the Bonn
group [24].

3 Results for p(e, e′K+)Y

In Refs. [20, 21], the RPR prescription was applied to the
various γp → KY reaction channels. A number of variants
of the RPR model were found to provide a comparably
good description of the Λ, Σ0 and Σ+ photoproduction
observables. Their properties are listed in Table 1. Inciden-
tally, the parameters of the K+Λ variants from Ref. [20]
have been slightly readjusted in order to describe the new
singly-polarized GRAAL data [5].

The background contribution to the RPR amplitude
involves three parameters: one for the K(494) trajectory
(gKY p) and two for the K∗(892) one (Gv

K∗ and Gt
K∗ , cor-

responding to the vector and tensor couplings). In ad-
dition, for each trajectory propagator, either a constant
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Background D13(1900) P11(1900) χ2

K+Λ

RPR 2 rot.K, rot.K∗ – ⋆ 3.2
phase, Gt

K∗ < 0 ⋆ – 2.7
RPR 3 rot.K, cst.K∗ – ⋆ 3.1

phase, Gt
K∗ > 0 ⋆ – 3.2

RPR 4 rot.K, cst.K∗ – ⋆ 3.1
phase, Gt

K∗ < 0 ⋆ – 3.1
K+Σ0

RPR 4′ rot.K, cst.K∗ – – 2.0
phase, Gt

K∗ < 0

Table 1. RPR variants providing the best description of the
p(γ,K+)Λ and p(γ,K+)Σ0 data. All models include the known
S11(1650), P11(1710), P13(1720) and P13(1900) N∗ states.
Apart from these, each K+Λ variant assumes either a miss-
ing D13(1900) or P11(1900) resonance. A good description of
the K+Σ0 channel could be achieved without the introduction
of any missing resonances. The K+Σ0 amplitude further con-
tains the D33(1700), S31(1900), P31(1910) and P33(1920) ∆∗

states. The last column mentions χ2 in comparison with the
low- and high-energy data from Refs. [1–6,25–27].

(const.) or rotating (rot.) phase may be assumed. As can
be appreciated from Table 1, in the K+Λ channel two
combinations (rot. K, rot. K∗/rot. K, const. K∗) lead to
a comparable quality of agreement between the calcula-
tions and the combined high-energy and resonance-region
data. Furthermore, for the latter combination, the avail-
able photoproduction data do not allow one to determine
the sign of Gt

K∗ . With respect to the quantum numbers
of a potential missing N∗(1900) resonance, both P11 and
D13 emerged as valid candidates.

Without readjusting any parameter, we have confronted
the RPR variants from Table 1 with the electroproduction
data. In this way, their predictive power can be estimated.
A selection of the results is contained in Figs. 1-3.

The left panels of Fig. 1 display the Q2 evolution of
the unseparated (σT + ǫ σL) and separated (σT and σL)
p(e, e′K+)Λ differential cross sections. The RPR variants
3 and 4 (not shown) are incompatible with these data,
as they predict an unrealistically steep decrease of σT as
a function of Q2. As seen from the figure, both RPR-2
variants describe the slope of this observable well.

Because the unpolarized electroproduction data do not
allow to discriminate between the RPR-2 amplitudes as-
suming a missing D13 or P11 state, we also consider the

transferred polarization for the −→e p → e′K
−→
Λ process. Fig-

ure 2 compares our calculations for P ′

x, P ′

z, P ′

x′ and P ′

z′

to the data [9]. It is clear that the RPR-2 amplitude in-
cluding a D13(1900) state produces results far superior
to those of the one assuming a P11(1900). Our combined
analysis of the photo- and electroproduction data thus
leads to the identification of RPR2 (Table 1) as the pre-
ferred model variant, and of D13(1900) as the most likely
missing-resonance candidate, in the K+Λ channel.

For the p(e, e′K+)Σ0 process, only unpolarized data
are available. In the right panels of Fig. 1, the separated
and unseparated cross sections are compared with the re-
sults of the RPR-4′ variant from Table 1. For all three
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Figure 1. Q2 evolution of the unseparated and separated dif-
ferential cross sections for the K+Λ (left) and K+Σ0 (right)
final states. The data for σT +ǫσL were taken at W ≈ 2.15 GeV
and θ∗

K ≈ 0, and those for σL and σT at W ≈ 1.84 GeV and
θ∗

K ≈ 8 deg. For the K+Λ channel, results of the two RPR-2
variants from Table 1 are displayed, whereas for the K+Σ0

channel, the prediction of the RPR-4′ model from Table 1 is
shown. The dotted curves correspond to the Regge background.
The data are from [8,28–30].
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1.69, 1.84 and 2.03 GeV. Line conventions as in Fig. 1 (left
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observables, the data are well matched by the computed
curves. It turns out that σT + ǫσL and σL can be reason-
ably well described in a pure background model, whereas
reproducing the slope of σT clearly requires some resonant
contributions to the amplitude.
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The data are from Ref. [10]. Line conventions as in Fig. 1 (right
panel).

New electroproduction data from the CLAS collabora-
tion, including measurements of the σLT and σTT struc-
ture functions, have recently become available [10]. In
Fig. 3, we show predictions for the cosθ∗K dependence of
σT + ǫ σL, σTT and σLT for one of the energy bins covered
by CLAS, using the RPR-2 model with a missing D13 for
the K+Λ channel, and RPR 4′ for the K+Σ0 one. Both
the full RPR-2 amplitude and its background contribution
reasonably reproduce the trends of the p(e, e′K+)Λ data,
including the strong forward-peaking behavior of the un-
separated cross section. For p(e, e′K+)Σ0, the quality of
agreement with the data is considerably worse. The ab-
sence of any forward peaking in this channel is, however,
predicted correctly by the RPR-4′ model. The differences
between the RPR and background results are significantly
more pronounced for Σ0 than for Λ production, hinting
that useful resonance information may be gained from the
K+Σ0 channel.

4 Conclusion

We have applied a Regge-plus-resonance (RPR) strategy,
developed for kaon photoproduction from the proton [20,
21], to obtain a description of the p(e, e′K+)Λ, Σ0 pro-
cesses in the resonance region. It was demonstrated that
the electroproduction response functions and polarization
observables are particularly useful for fine-tuning certain
RPR-model choices which the p(γ, K)Y data fail to un-
ambiguously determine. We expect that the new CLAS
photo- and electroproduction data [7, 10] will serve as a
stringent test of the proposed models’ predictive power,
and provide important leverage for further refinements.
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