
Scenario-Based Analysis of Statechart
Construction

Benjamin De Leeuw1 and Albert Hoogewijs2

Universiteit Gent, Galglaan 2, B-9000 Gent, België,
1benjamin.deleeuw@ugent.be??,

2albert.hoogewijs@ugent.be

1 Abstract

Scenario based specification [1] is an approach to behavioural specification of
systems as inter object messaging patterns. Grafted on this theory, some ongo-
ing work studies the construction of equivalent statecharts [2] by analyzing and
composing these scenarios with sequential, disjunctive, conjunctive and iterative
composition rules[3, 4]. We present a technique for statechart construction, in-
spired by these scenario composition rules, which moreover led to a valuable
classification of statechart construction patterns. In this approach we construct
statecharts by iteratively composing atoms to more complex constructs, using
four statechart rewrite rules: burst, bubble, concurrency and transreduction. An
atom or atomic statechart is a small one state statechart with one incoming
start edge and one outgoing edge to termination, where the start edge label is
a list of actions, and the label of the terminal edge consists of a trigger and a
guard. Combining two of these atomic statecharts sequentially results in a stat-
echart with two states, connected with a normal transition with trigger, guard
and actionlist, and a start and terminal edge as before. The composition rules
we present, abstract this sequential composition of atoms, by taking an edge or
state of a statechart and replacing it with a more complex construct consisting
of one or more added states and edges. The burst rule rewrites edges, where
the bubble, concurrency and transreduction rules rewrite states and redistribute
incoming and outgoing edges of the original state to newly generated states. The
edge labels are generated accordingly and introduce demonic (event based) and
angelic (shared memory based) choice in the generated statechart. We provided
a Java implementation of this generation process based on four rewrite rules.
Applicability of generated statechart test cases can be in any form of persuasive
argument towards stakeholders in industry and the science community. With the
proposed tool, testing with (randomly) generated statecharts becomes available
and software enigneers will be able to more acurately evaluate the usefulness of
emerging statechart analysis tools in a more “hostile” environment than can be
offered by made-up ATM or vending machine specifications.

?? Funded by Universiteit Gent (BOF/GOA project B/03367/01 IV1) and the Prof.
Dr. Wuytack Fund.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55685581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


References

1. Carroll, J.M., ed.: Scenario-Based Design: Envisioning Work and Technology in
System Development. John Wiley and Sons (1995)

2. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8(3) (1987) 231–274

3. Vasilache, S., Tanaka, J.: Synthesizing Statecharts from Multiple Interrelated Sce-
narios (2001)

4. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. In: ICSE
’00: Proceedings of the 22nd international conference on Software engineering, New
York, USA, ACM Press (2000) 314–323


