Declarative Meta Programming
to Support Software Development

Workshop Proceedings

ASE 2002, Edinburgh, UK (23/09/2002)

Tom Mens
Programming Technology Lab
Vrije Universiteit Brussel, Belgium
tom.mens@vub.ac.be

Roel Wuyts
Software Composition Group
University of Bern, Switzerland
roel.wuyts@iam.unibe.ch

Kris De Volder
Department of Computer Science
University of British Columbia, Canada

kdvolder@cs.ubec.ca

Kim Mens
Département d’Ingénierie Informatique
Université catholique de Louvain, Belgium
kim.mens@info.ucl.ac.be




A Declarative Persistency Definition Language

Muna Matar, Institute for Continuing Education
Ghent University, Belgium
Koenraad Vandenborre
Inno.com cva Belgium
Ghislain Hoffman, Herman Tromp
Department of Information Technology, Ghent University, Belgium

Abstract

This paper presents the Persistency Definition Language (PDL). PDL is a
declarative language that is embedded in Javadoc style tags in order to in-
troduce persistency metadata information in Java classes.

Introduction

Persistency is an object-oriented programming technique that deals with the
ability of objects to exist beyond the lifetime of their creator or user. Persis-
tency is usually implemented by preserving the state (attributes) of an object
during its lifetime in a database, in most cases possibly in a relational database
(RDBMS). The RDBMS technology is robust and widespread.

Designing software to connect an object-oriented software system to a rela-
tional database is a tedious task. Object structure and the table based relational
technology are two widely differing paradigms. Hence, bridging the gap between
the two worlds by mapping objects to database tables is often a task that takes
a lot of effort, and is often too pervasive at the different layers of a multi-tiered
architecture [2] [3].

Java offers introspection to obtain information about objects and classes at
run-time. Unfortunately, introspection, although a powerful feature, is limited
to gathering information about class structure and attribute values.

Meta information about classes that is related to making instances of those
classes persistent can not be found from class code. Persistency related issues
are impossible to declare in Java. This shortcoming of the language lead us
to come up with another ”declarative language” that helps to identify and de-
clare persistency related information. This language is called the Persistency

31



Definition Language or simply, PDL. PDL integrated with the introspection
feature in Java provides a complete persistent description of persistent classes.

Related work

The need to provide auxiliary information for program elements appears to be
growing. Information about fields, methods and classes as having particular at-
tributes that indicate they should be processed in special ways by development
tools, deployment tools, or run-time libraries is called annotations metadata [5].
The JSR 175, a metadata facility for the Java programming language [4] and
the Sun Java Data Objects (JDO) [5] discuss this issue in details.

"To describe how persistence related issues and information can be decoupled
from class implementation, the Aspect Oriented Programming paradigm (AOP)
can be used [7]. See also (http://aspectj.org).

The work of K. Vandenborre and others, described in [6], gives a description
of a general methodology which illustrates how persistence can be made orthog-
onal from the class library by using the AOP.

What AOP presents in terms of solving some issues related to persistency is
very valuable. But, even with using AOP, we still need a declarative mechanism
by which we can introduce persistency related information into class code which
AOP does not provide. That is why the need for PDL was still valid.

PDL

When working with persistency related issues like building a framework to store
Java objects, we were confronted with the weak declaration mechanism in Java.

The main problem that we were faced with when using introspection and
the reflection API was that declaring many of the persistency issues was not
possible in Java. Java is not declarative enough to do so. Java allows only
transient and non-transient to be declared and there is no way to incorporating
detailed persistence information.

PDL was developed in the context of a storage framework called PDLF.
The PDLF is an all Java object-relational declarative framework that enables
Java objects to be persisted to relational databases. This framework provided
persistency description of classes as well as the capability for objects to be stored
and retrieved from a relational database. The full description of this storage
framework is out of the scope of this paper and can be found in [1].



As mentioned above, PDLF makes Java objects capable of storing and re-
trieving themselves from a relational database. And since the gap between Java
objects and the table based relational structure is very wide, a detailed persis-
tency description of classes and attributes had to be provided somehow to the
PDLF to help map objects into relational tables and therefore make objects
capable of being made persistent. '

An example of one of the persistency issues needed that could not be declared
in Java, would be how to identify an object accessor. An Object accessor is an
attribute of the object that can be used to access objects with in the database
Le query the database with. Normally an object accessor is an attribute of
the class. When an attribute is declared in any Java class, using introspection,
certain information about the nature of the attribute and the dynamic accesses
to it (e.g. name, type, value, etc. ) can be found. This kind of information
indicates nothing about a possible use of the attribute in a certain application.

PDL was introduced to cover the shortcomings of Java in terms of persis-
tency aspects. It helps classify persistency aspects as well as provide a persis-
tency description of a class. The main advantage of PDL is to decouple the
persistency aspects and description of a class from the class implementation.

PDL is a tagged based extensible language. This means that all declarations
are done through using PDL tags. PDL tags are Javadoc style tags that are
added to the source code of every persistent class.

PDL can be considered to be a Domain Specific Language (DSL) [8] in
its general purpose and form. It is an embedded and a declarative language.
Implementing DSLs as embedded languages is a well known technique.

PDL Tags

As described above, PDL is a descriptive tagged based language. It makes use
of tags which are Javadoc style tags. Identifying what tags needed came from
identifying what persistency aspect were needed and were not possible to cover
using Java. After an extensive search and running some tests on some appli-
cations, twelve PDL tags were introduced. Those tags are: @dalabase, @table,
@major, @minor, @persistent, @state, @accessor, Qunique, Qindez, @contained,
@size, and @eompType.

PDL tags can be classified as follows:

e versioning tags: which are tags that define the class version. They consist
of the @major and @minor tags.

e mapping tags: which are tags that have to do with mapping classes and
attributes to database tables. They consist of the @persistent, @database,

33



and @table tags.

e retrieval tags: which are tags used in queries. They include the @aceessor
tag.

e internal state tags: which are tags that describe the internal structure of
objects. They consist of the @state, Gsize, @contained, and @comp Type.

e table design tags: which are tags that help in designing table columns.
They include the @unigue and @indez tags.

Since defining new needed tags is the core of PDL, we can say that PDL is
closely related to XML. In XML one can define his/her own set of tags. PDL
lets one identify persistent aspects of classes using meaningful tags and it lets
one add information (meta-data) about each aspect. PDL is also flexible in the
sense that new needed tags can be defined and added. We have to keep in mind
that PDL was developed to add persistency meta information to classes so any
new added tags must be relevant to the purpose of finding PDL.

A detailed description of each of the PDL tags can be found in [1].

Using PDL Tags

PDL tags are added to the source file of any persistent class. They are embed-
ded within a Javadoc comment. And since PDL tags are of Javadoc style, they
are situated preceding attributes they provide persistency aspects to. Those
tags act like trigger points in the source code. In addition to that, those tags
provide a structure that can be processed by a special tool.

Example 1 below illustrates the way PDL tags are inserted into the source
code of any persistent class.

Example 1:
package MyApplication;

VET
* @database ” Company”
* @table "Employee”
* @magor 01
* @minor 00
=/
public class Employee {
public static ClassVersion classVersion = new ClassVersion(” 01”7007 );

Sk

* @persistent

34



* @accessor
* @index

* @Qunique
%

private Name empName;

Sk
* @persistent
* @contained
*/

private Address address;

S

* @Qpersistent

* @accessor

* @index

* @size 10

*/

private ByteField jobTitle;

//constructor
public Employee(}{

}

//other constructors and methods go here

}
Processing PDL Tags

To parse the PDL tags in the source files, a tool (PDL processor) has been
developed. This tool uses a special Javadoc doclet. The tool takes a source
file with PDL tags in it and produces an XML, file. This XML file contains a
persistency description of the persistent class.

It must be clear here that Javadoc and XML are used in the PDLF context
merely as tools. XML as the universal format for structured documents and
data on the Web is modular, easy to read and most important easy to parse.
Through parsing an XML document an application can make the data available
in different formats.

The PDL processor mentioned above makes use of an XML parser which
helps generate SQL code that is used by the PDLF for different purposes such

as creating database tables and storing and retrieving objects from those tables.

Running Javadoc on the source code presented above in example 1 with the
special doclet (PDL processor) will produce the following XML file.

<7xml version="1.0’7>

35



<IDOCTYPE ClassLibrary >
<classDescriptor Class="My Application.Employee” >

<classVersion major="01" minor="00">
< /classVersion>

<db database="Company ” table="Employee” >
</db>

<pAttribute accessor="true” index="true” unique="true” contained="false” >
<attributeOfClags>
MyApplication.Employee
< /attributeOfClass>
<attributeName>
empName
< /attributeName>
< /pAttribute>

<pAttribute accessor="false” index=""false” unique="false” contained="true” >
. <attributeOfClass>
My Application.Employee
< fattributeOfClass>
<attributeName>
address
< /attributeName>
</pAttribute>

<pAttribute accessor="true” index="true” unique=""false” contained=""false” >
<attributeOfClass>
My Application. Employee
< /attributeOfClass>
<attributeName>>
jobTitle
< JattributeName>
<size size="10">
< [size>
< /pAttribute>

< /classDescriptor>

Obtaining the XML file was one of two stages any persistent class needed
to go through to be able to register with the PDLF. When a class registers
with the PDLF, instances of this class can be made persistent in addition to the
fact that a complete persistence description of that class is added to the central
repository of the PDLF. This repository is a metadata container of persistent
classes and their mappings to database tables. This repository is heavily used
when reading and writing objects to database tables.

36



Conclusion

What we have presented in this paper is an extensible langauge, PDL, which
can be used to declare persistency metadata information in classes. Due to the
extensibility nature of this language, it can be also used to introduce other meta
information about classes beside persistency class information.

It is important to note here that PDL emphases the idea of decoupling per-
sistency issués from class implementation issues. It provides a single point of
reference to persistency related information within a persistent class.

Providing this information using Javadoc style tags made it easy for us to
present a persistent description of classes and process it using many of the avail-
able tools and technologies like XML.

References

[1] Muna Matar. A methodology for object persistence in Java based
on a declarative strategy, Ph.d Thesis., Ghent Univesity, 2001,

[2] Peter Kroha. Objects and Databases. McGraw-Hill Publishing
Company, 1993.

[3] S. Agarwal, A. Keller., and R. Jensen., Bridging object-oriented
programming and relational databases. 1993

[4] Java Community Process, JSR 175,
www.jcp.org/jsr/detail /175.prt

[5] Java Data Objects, JSR 12. Craig Russell. Sun Microsystems Inc.

[6] K. Vandenborre., M. Matar., and G. Hoffamn. Orthogonal per-
sistence using Aspect Oriented Programming. The proceedings of
the first AOSD workshop on Aspects, Components and Patterns
for infrastructure software, April 2002.

[71 G. Kiczales, J. Lamping, A Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, and J. Irwin. Aspect-Oriented Programing. The pro-
ceddings of the European Conference on Object-Oriented Pro-
graming, June 1997.

(8] A. van Deursen, P. Klint, J. Visser. Domain—Speciﬁc Languages:
An Annotated Bibliography. ACM SIGPLAN Notices, June 2000.

37



