Modelling application handovers for thin-client mobility

P. Simoens*, L. Deboosere, D. De Winter, F. De Turck*, B. Dhoedt and P. Demeester
Department of Information Technology (INTEC), Ghent University
Gaston Crommenlaan 8 bus 201, B-9050 Gent, Belgium.
{Pieter.Simoens, Lien.Deboosere } @intec.ugent.be
" Research Assistant for the Fund of Scientific Research (FW.0.-V, Belgium)
* Postdoctoral Fellow for the Fund of Scientific Research (FW.O.-V. Belgium)

Abstract

Mobile users need lightweight devices with low energy
consumption, When applications are executed on remote
servers instead of locally on the end-user’s device, the
weight of the device can be reduced and battery lifetime
can be extended. Therefore, thin-clients are ideally suited
Jor mobile users. All calculation logic is removed from the
device and the communication with the application server
is accomplished by a remote deskiop protocol. Reactions to
user events can appear on the screen only after a two-way
path delay, so application responsiveness can decrease if
the user moves further away from his server. To enable ubi-
quitous thin-client computing with satisfying user respon-
siveness, the application should make a parallel movement
with the mobile user. This paper focusses on the handover
between two application servers. A model is presented for
the design of a thin-client network thar meets the require-
ments of moving users and the resulting number of hand-
overs is shown. Three mechanisms for the server handover
are presented. For each scenario, an estimation is made
for the timeframe during which the client does not receive
screen updates.

Keywords: thin-client, mobility, application handover

1 Introduction

Mobility has become commonplace in today’s networks.
Nomadic and mobile users are highly interested in light
and easy-to-transport devices. They want to execute their
applications fast and reliable on every location worldwide.
Battery lifetime is another important issue. Thin-clients
can offer a solution to these challenges and are therefore an
eligible candidate to enable this ubiquitous computing.

Applications are executed on back-end centralized ap-
plication servers, instead of locally on the end user’s
device. Every client event (key strokes, mouse movements)
is transmitted over the network towards an application

Becess
gateway

application
server

Figure 1: The application migrates along with the mobile
user to the closest available application server to guarantee
an acceptable delay at all times.

server which executes the commands, renders the appro-
priate screen updates and returns them to the client. The
communication is established by means of a dedicated
remote desktop protocol. Some well-known examples are
Citrix Independent Computing Architecture and Windows
Remote Desktop. All calculation logic is shifted from the
end-user towards application servers inside the network.
The client only decodes the received screen updates and
can thus be made as ‘thin’ as possible. By removing all
processing hardware, the device can be made lighter.

Performing the complex calculations on network servers
instead of locally on the end-user’s device decreases energy
consumption and extends the battery lifetime. Equiping
thin-clients with dedicated (lightweight) hardware might
further improve the energy balance. Although it should
be noted that the continuous (possibly wireless) network

connection with the server has a negative impact on
the energy balance, we believe that the total result can
be positive by using dedicated hardware and making a
well-considered trade-off between the functionality of the
user’s device and the application servers (i.e. the device can
execute lightweight applications locally). The concept of
‘Server-Based Computing’ brings a myriad of other advan-
tages. The user is released of the burden of daily software
and virus definition updates, since this can be offered by
the admin team of the application server farm. In corporate
environments, central management of the computer park
is sufficient and hardware updates become unnecessary,
which can result in economic savings. Employees can
easily access their regular home office desktop from every
affiliate worldwide.

Users expect the network to offer the same function-
ality and quality from each location worldwide. The
thin-client paradigm can inherently suffer from a high
latency, since reactions to user events can appear on the
screen only after a two-way path delay. If an employee
connects from an overseas affiliate to his home office, this
delay can become noticeable. A high degree of respon-
siveness can only be guaranteed by keeping the delay as
low as possible. As users travel throughout the world, their
applications should make a parallel movement and migrate
to the closest available application server. An example
use-case for mobile thin-clients is presented in Figure 1. At
¢ = 0 the user’s application is executed on a server nearby
his access gateway (AGW). At ¢t = 1, the user has moved
and is now connected to another access gateway, but the
same server can still fulfil the quality requirements of the
user. When the user moves further, this is no longer valid
and at ¢ = 2, another server will take over the job. The
application of the user migrates to the new server, where it
is restarted in exactly the same state as before. At¢ = 3,
the user reaches his destination. His application is migrated
and restarted at the application server of the company he
works for,

To enable process migration, sufficiently application
servers have to be installed across the network. An overlay
management platform will control the handovers between
two application servers. This control framework will assign
a server to new applications. Existing comnections are
monitored to guarantee the desired user experience. If
the connection quality drops below predefined thresholds,
a betier application server must be found. The user
session is migrated towards this new server and restarted.
All of this should happen without the user noticing, or
at least with a minimal down-time of the user’s applications.

The remainder of this paper is structured as follows. In sec-

tion 2 we survey related work in the area of process migra-
tion and TCP connection handovers. A model for desi gning
a thin-client network is presented in section 3. The number
of handovers is calculated for different values of the delay
and the results are compared. Section 4 elaborates on the
specifics of the handover mechanism. Three possible sce-
narios are presented and compared. For every scenario the
time is calculated during which the client does not receive
screen updates. Conclusion and future work are presented
in section 5.

2 Related Work

The concept of application (or process) migration between
servers was originally developed for load balancing in
a server cluster. Some examples are Condor [1] and
MOSIX [2]. With these techniques, only processes that do
not use inter-process communication or have open network
connections can be successfully migrated to another server.
Furthermore, migration is not fully transparent, since for
e.g. open files are not migrated, and the application at the
new server relies on the open files at the original server.
More recent process migration techniques like ZAP [3] have
solved these drawbacks, by inserting a visualisation layer
above the operating system. An application can be fully mi-
grated, including network connections and open files, with-
out leaving any residual state on the original server.

If an application with an open TCP connection must be
migrated, the tuple identifying the connection must be up-
dated. ZAP uses a virtual-physical address mapping mech-
anism [4]. Also MIGSOCK [5] is able to migrate an open
connection transparently 1o a new server. Messages are ex-
changed to inform the other (not moving) end of the net-
work connection about the connection migration. A com-
parison of the performance of ZAP and MIGSOCK is made
in [6].

The users we want to serve, are mobile. They can move
fast, e.g. by train or by car. In [7], research is done to assure
connectivity to fast moving users.

In this paper the presence of an effective process migration
mechanism is assumed and we focus on the actual handover
of the application image between application servers.

3 Application server switching
3.1 Formal Model Description

We developed a model for the design of a thin-client net-
work [8]. The model yields the optimal locations to install
sufficiently application servers to meet the delay constraints
of the used applications at the lowest possible cost. As
stated in the introduction, the user-server path delay should
be kept as low as possible. This delay is expressed as a

maximum hop count between the user’s AGW and the ap-
plication server, and may differ for each type of application.
The cost of opening a new server farm is separated from the
cost of installing a new server in an (existing) server farm.
The network is characterized by its set of I nodes and (uni-
directional) links:

= {n;} withi=0,1,...,] — 1

1
L= {(n;,ny)} withi,i € N W

The set N is divided into three subsets. The first sub-
set S indicates the possible server locations, the second U
the access gateways (AGWs) and the third the intermedi-
ate routers. We assume that application servers cannot be
installed at the AGWs nor at the intermediate routers.

S={n;} withi=0,1,..,.X -1

2
U={n;} withi=XX+1,.,X+U-1 @

The parameters « en 3 denote respectively the cost to install
a new server (in an existing server farm) and the cost to
open a new server farm. The following objective function is
minimized:

T—-1J-1 K-
[s ZS +ﬂ ZlOCZ Z au/jk(t),

2393 Z
t=0 j=0 k=0 (4,i")EL
3

with S; the number of servers at location n;, loc; indicates
whether a server farm is installed at location n; or not, and
a;;5(t) indicates whether link (n;,n;) is used for rout-
ing the traffic corresponding with user j’s application k at
timestamp ¢ or not. User mobility is simulated by changing
the AGW through which they are connected. The delay con-
straint of the application is counted as the number of hops
between the AGW and the server. It is possible that multiple
servers can be reached from an AGW without exceeding the
maximum allowable delay (hop count). Therefore, a third
term is added to equation (3) to assure that in this case the
closest server (in terms of hopcount) will be chosen. Para-
meter vy is used as a weight factor, in order to have the value
of equation (3) be mainly determined by its first two terms.
The solution has to fulfil several constraints. The delay be-
tween the user and the server executing his application may
not exceed the maximum allowable delay. User-server traf-
fic should be routed along the links in the network with re-
spect to the link capacity. Other constraints are the fact that
a server can only be installed when a server farm is opened
at that location; all applications run on exactly one server
at every moment (but this server can vary throughout time);
and server farm capacity must be sufficient.

3.2 Number of handovers

We applied the model presented above to dimension in
a cost-effective way the large city network presented in

Figure 2. Two different user scenarios where chosen: train
and highway. In the train scenario 48 employees, equally
distributed among 6 trains, travel to the central station
(AGWI19 on Figure 2). From there, they spread out to their
offices, randomly chosen between AGW20-AGW30. In the
second scenario, highway, 50 users are travelling by car
to their office. They enter randomly the highway around
the city and take the nearest exit to their office. Both the
travelling direction (clockwise or counterclockwise) and
the office are randomly chosen.

AGW0O P
AGwa1 @
gy

\AQW}ﬁ
L
-

)

e @a
AGNOQ

6
AG\ ‘28

AG A2 3
| AGus " AGwa1 R
;

o038 % g rs -

AGY20 . ate

& & . Af3wos
/ 026 7y, N ‘«%x
e e 7 AGWiT

.
o

o5 AGW2E

Figure 2: Representation of a city with 3 railroads to the
central station and a highway around the city. Users can
connect to the network via one of the AGWs. Servers can
be installed at every node n;.

We analysed the simulation results to have an idea of the
number of handovers in both scenarios. Figure 3 shows the
results as function of &/, We kept v = 1, 8 = 100.000
en varied « in equation (3). The infinity case corresponds
to @ = 100.000 and § = 0. In both scenarios, the global
trend in Figure 3 is an increase of the number of handovers
with «/ 3, for every value of the delay parameter. There
Is always a minimum amount of servers needed to satisfy
the demand. The greater /3, the less the relative cost of
opening a new server farm. As a result, equation (3) is
minimized by spreading the servers as much as possible
(since this does not come with significant extra costs),
in order 1o reduce the third term. This means that every
application is executed on a very near application server at
all times (see the third term in (3)}, although other servers
might be within the maximum delay constraint. This incurs
more handovers than necessary and explains the increasing
trend in Figure 3. The increase is slightly mitigated for a
delay of 1 hop and a delay of 5 hops. When only 1 hop is
allowed, every AGW to which users are connected, must

!

P
L
|
.

Total number of Handovers
=]

[a1 1 G afinity

(a) Train

B verey 1
T Detay 3
B oclay 5

1w

Total number of Handovers

£

10 infinity

(b) Highway

Figure 3: Total number of handovers during the whole simulation time (t = 10).

have an application server available within T hop. Due to
this stringent delay requirement, the number of possible
server locations is limited. Regardless of the cost (and
hence the value of a/(3), the installation of the application
servers will not vary very much and hence also the number
of handovers will be quite constant. As for a delay of 5
hops, a server can service a lot of the surrounding gateways
and the servers can be greatly clustered. Few server
farms are opened and due to this clustering, an application
will remain on the same server for a longer time. The
cost-reducing effect of the clustering in the second term
of (3) stays large enough, even when opening new servers
becomes relatively cheap. Only with g = 0 this effect
disappears completely, which explains the huge increase of
the number of handovers.

The increasing trend is broken by & = 0. In that case,
installing new servers does not bring extra costs. Again,
the same effect will come into play. More servers will be
installed to minimize the third term in (3). This comes with
an increase of the number of handovers (more frequently
switching from application server).

A final remark can be made for a constraint of a 3 hops
delay. Normally, fewer handovers are required when the
maximum hop count is greater. The cases /8 =1, a/0 =
10 (highway scenario) and a/3 = oo (both scenarios) seem
to be an exception on this trend. We can explain this by
referring to the large solution space for an allowable delay
of 3 hops. More choices have to be made to select a server
out of the eligible server farms, since more servers can be
reached from the AGW than when only 1 hop is allowed.
The users in the highway scenaric make more movements
(i.e. a user moves to another AGW) than the users in the
train scenario, as can be seen in Table 1. The users in the
highway scenario can also connect to other AGWs than in
the train scenario. As a result, the locations of the server
farms differ between both scenarios. There are more server
farms opened in the highway scenario than in the train
scenario for the cases where «/F is I, 10 and co. These

extra server farms, together with the extra movements of
the users, the big solution space and the fact that no penalty
is included in the model for a handover, explain why in
these special cases, there are more handovers in our model
for the 3 hops constraint than for the 1 hop constraint.

Table 1: User movements and handovers for «/8 = 1 and
delay = 3 hops.

user avg. handovers | movements
movements /timestamp /handover
train
(48 users) 240 6.9 35
highway
(50 users) (£) 325 () 13.6 (£)24

The total number of handovers must be seen in relation to
the number of users movements (i.e. when a user changes
his access gateway). The results are presented in Table 1,
and are given for o/3 = 1 and delay = 3 hops. For the
highway scenario, only averages are shown, due to the
random nature of the scenario. In the first column, the total
number of user movements is given, the second column
gives the (average) number of handovers per timestamp
during the simulation. The third column shows the number
of user movements before a handover becomes necessary.
It might be no surprise that this number averages around
3. The presented results are for a 3 hops delay constraint,
so in most cases an application server switch might be
necessary after 3 movements . In the train scenario, this
number is slightly higher, due to the fact that all users arrive
at the central station. Their next hop is the office, which is
mostly more than 3 hops away from the central station. An
additional handover is necessary for their final movement.
In the highway scenario, this is less the case. The server to
which the user is connected when he leaves the highway
(which is nearby his office) is probably also within 3 hops
from the office, so no final handover is necessary.

We can conclude that in our model, a larger delay
(such that more server locations are reachable from an
AGW within the delay constraint) does not always result in
a decrease of the number of handovers.

4 Application server handover mechanism

From the results given in Table 1, we can conclude that a lot
of handovers are necessary in a thin-client network. Users
should not notice their running applications migrating to an-
other server. A handover mechanism with minimal duration
is needed.

4.1 Migration of thin-client applications

A process migration should leave no residual state at the
original server and the application must run independently
on the new server. An overview of existing migration archi-
tectures was presented in section 2. Several other problems
arise when migrating a thin-client application. A monitor-
ing platform should be deployed for the user-server connec-
tions. Triggers are fired when a connection deteriorates to
start the selection of a better application server and resource
reservations must be made. The process is checkpointed
and the process image is transmitted to a new server, where
the application is restarted. In this paper, we assume the
presence of a monitoring platform, decision algorithms for
the choice of a better application server for the client, a pro-
cess migration architecture and a resource reservation pro-
tocol. These problems are not inherent to the thin-client
architecture.

A thin-client and his server communicate over a permanent
connection via a remote desktop protocol. User events are
sent to the server, which renders and sends back the appro-
priate graphical output. In order to guarantee state consis-
tency, it is important that no user events are lost,. When a
process is checkpointed, a notice should be sent to the user
with the IP address of the new application server. The appli-
cation updates its connection status and future user events
are sent to the correct application server. Several examples
of connection status update mechanisms were given in sec-
tion 2.

User events can get lost in two ways: events sent just after
the process is checkpointed, but before the notice from the
(original) application server is received; and events, sent af-
ter notice reception, that arrive at the new application server
before the process image is restarted there. It should be
noted that most thin-client protocols run above TCP, so de-
livery of the user events is guaranteed. We believe that is
better not to rely on the TCP retransmit. Latency and re-
sponsiveness are of great importance in a thin-client envi-
ronment, so waiting on a time-out of the TCP timers intro-

duces unnecessary delays. Furthermore, time-outs trigger
the congestion control mechanism of TCP, which is a wrong
reaction since the data loss is not the result of a congestion
problem inside the network.

4.2 Handover models

Figure 4 presents 3 possible models for the handover. The
application migrates from server 1 to server 2. For all
situations, we calculate the down-time of the application
or, otherwise stated, the timeframe during which the client
does not receive any graphical updates from its application
server. It is assumed that the IP address of the next appli-
cation server is known at ¢ = 0. The user is continuously
sending events to the server. Other assumptions are the im-
mediate processing of incoming user events and immediate
availability of the graphical results to be sent back. Table
2 gives an overview of the used parameters. We assume
a symmetric one-way path delay between user and server.
Please note that 6; > &,, otherwise a handover would not
be necessary.

Table 2: Used parameters in the 3 situations of Figure 4.
The one-way path delay is assumed symmetric.

41 | one-way client - server 1 path delay
d2 | one-way client - server 2 path delay
d3 | one-way serverl - server 2 path delay

A | time to checkpoint, transmit and restart application

4.2.1 Event forwarding

Figure 4(a) shows the considered configuration. At ¢ = 0,
the process is checkpointed and the client receives its last
screen updates from server 1 at ¢ = &;. At the moment of
checkpointing, a notice is sent to the client to inform it of
the migration. This notice contains the IP of the new ap-
plication server. Events generated after notice reception are
sent to server 2. All user events, generated between the mo-
ment of checkpointing (¢ = 0) and notice reception (f = &)
are still sent to server 1, which immediately forwards them
to server 2. In worst case, the last forwarded user event ar-
rives at server 2 at ¢ = 24; + 3. The application is again
up and running on server 2 at ¢ = A. This results in a time-
frame of T' = max(26; + 83, A) + 8, — §; during which the
client does not receive screen updates.

In this scenario, a buffer must be provided at server 2 during
the handover. The period 7 = 2d; + d3 must be accurately
measured, since only after this period all user events are for-
warded by server 1. The first event directly sent to server 2
arrives at t = d&; + dg, but to guarantee state consistency,
these events may not be processed before the ones that were

Sarver 1

Client Client

(a) Event forwarding

(b) Delayed checkpointing

Server 2

Client

(c) Client buffering

Figure 4: 3 handover models

forwarded by server 1. The measurement of 7 can probably
be accomplished with the well-known ping utility, although
the accuracy of this method should be verified. Based on the
measurement variation, one could introduce a safety margin
¢ and wait 7 + ¢ before processing the events directly sent
to server 2. Every additional delay however deteriorates the
responsiveness of the application.

4.2.2 Delayed checkpointing

Figure 4(b) shows the second scenario. At ¢ = 0, a notice is
sent to the client with the IP of the new application server.
The checkpointing itself is delayed till ¢ = 24, the last mo-
ment on which user events can arrive on server 1. We as-
sume that the graphical response to these events is sent back
to the client just before the checkpointing. These updates ar-
rive at the client at ¢t = 34;. The migrated application is up
and running on server 2 at £ = 2§; +A. The first user events
arrive at server 2 at ¢ = 8; + d5, so this server can sent back
graphical updates starting at ¢ = max(26, + A, 61 + &a).
The client doesn’t receive screen updates during an interval
T = max(20; + A, 61 + 62) + 62 — 39;. Since we as-
sumed §; > dg, this expression can be further evaluated to
T = A+ dy — 61.

If A + 8 < 81, the screen updates from server 2 arrive at
the client before the last ones from server 1. The graph-
ical output should be queued by server 2 for a period of
41 — A — 84 before being sent to the client. In this case, an
almost seamless handover between the application servers
might be accomplished. However, A can only be estimated,
since the exact duration of process migration depends on
the application state itself, which is continuously changing.
Another advantage of this scenario is that no user events
are forwarded between the servers, which makes it easier
to guarantee that no user events are lost. A drawback of
this approach is that a buffer must be reserved on the server
for an application that is not (yet) running on that server.
Sufficiently safety mechanisms are needed to avoid state
inconsistency and remove the buffer when application mi-
gration fails. Just as for the event forwarding scenario, the

challenge of accurate time measurements is faced. Due to
the delayed checkpointing, the total handover time may in-
crease. This increases further when a safety margin is in-
chided in the checkpoint delay.

4.2.3 Client buffering

This scenario is shown in Figure 4(c). The client keeps
a copy of every user event in a buffer queue, untill an
acknowledge message (ACK) is received. These ACKs are
generated by the server for every received user event and
normally events stay for 24; in the queue. If an event is not
ACKed within this timeframe, all non-ACKed events in the
queue are resent.

The checkpoint is taken at ¢ = §; and at the same mo-
ment a migration notice is sent to the client, probably
piggybacked with an ACK or a screen update. Upon
notice reception, all the following user events are added
to the end of the buffer queue, but are not sent to server
2. Direct transmission is only resumed upon reception of
a new ACK. The front of the queue contains the events
generated between ¢ = 0 and £ = 24;. These were not
yet ACKed, since the application was checkpointed before
they arrived at server 1. At ¢ = 244, the first event in the
buffer queue generates a time-out and is resent, this time
to server 2. It arrives at the server at t = 28; + d9. The
application is up and running on server 2 at ¢ = §; + A.
If 6 + 62 > A, the retransmitted event is received,
immediately processed and ACKed by server 2. The
first screen update arrives at the client at ¢ = 2§; + 2d,,
which means that no screen refreshments were received
during a timeframe of T = 28,. If §; + do < A,
(A — 8y —d2)/281)] retransmits of the user events are
necessary, where | X| denotes the smallest integer larger
than or equal to X. The first screen update arrives at
f o= 251 -+ {,r(.ﬁ& -y~ 52)/253]15 - 1) 251 + 2d,. Retrans-
mits oceur every 24; and the last retransmit is successfull.
This means that no screen updates are received during a
timeframe of T = ([{A — &; — 82)/26,] — 1) 25, + 265,

The drawback of this scenario is that an acknowledgement,
time-out and retransmit mechanism must be added to the
thin-client protocol. In section 4.1, we argued not to rely
on the TCP time-out mechanism, because the wrong actions
are taken by the protocol. However implementing this func-
tion at the application layer might be more efficient, ques-
tions can be raised by the presence of the same function at
two layers and the required modifications of existing thin-
client protocols.

Table 3: Summary of the results for the 3 scenarios of Fi-

gure 4.
scenario application downtime
event forwarding max(20; + 03, A) + 05 — &;
delayed .
checkpointing At =d
client buffering
51 -+ 52 > A 252
81+ <A (’—(A—51-52)/2511“1)251
+24,

5 Conclusion and future work

Thin-client user responsiveness can only be guaranteed if
the application is executed on a nearby application server.
Applications should make a parallel movement with the
mobile users and migrate from one server to another. In this
paper, the number of handovers resulting from our model,
was calculated for a city network. Results were presented
for both a highway and a train scenario. The conclusion
was drawn that in our model a greater allowable delay does
not necessarily lead to a decrease of the number of servers.
The precise location of the different application servers is
a determing factor. In order to minimize the number of
handovers, the model should be extended with an extra
term that introduces a penalty for each handover.

We only considered the hop count as a decisive parameter
to initiate a handover between two application servers. Of
course, other parameters also influence the experienced
user responsiveness. The introduction of these parameters
can be a second extension of the presented model.

Ideally, the user does not notice the application hand-
over. Three possible mechanisms were presented and
the time was calculated during which the client doesn’t
receive screen updates. These differ in terms of buffer
locations, forwarding of user events and timing of the
application checkpointing. An accurate time measurement
tool is necessary for the proper functioning of the presented
mechanisms. Our future work will be mainly oriented
towards the development of a high performance decision
algorithm to choose an appropriate application server and
a protocol to reserve resources on the application server
previous to the migration.

References

(1]

(3]

[4]

(3]

[8

[}

91

(10]

[}

] Barak A. and Wheeler R.

Litzkow M. and Livniy M. “Supporting Checkpointing
and Process Migration Outside the UNIX Kernel”. In
Proceedings of the Winter 1992 USENIX Conference,
San Francisco, January 1992.

“MOSIX: An Inte-
grated Multiprocessor UNIX". In Proceedings of
the USENIX Winter 1989 Technical Conference, San
Diego, February 1989.

Osman S., Subhraveti D., Su G., and Nieh J. “The
Design and Implementation of Zap: A System for
Migrating Computing Environment”. In Proceedings
of the Fifth Symposium on Operating Systems Design
and Implementation (OSDI 2002), Boston, December
2002.

SuG. “MOVE: Mobility with Persistent Network Con-
nections”. PhD thesis, Department of Computer Sci-
ence, Columbia University, October 2004,

Kuntz B. and Rajan k. “MIGSOCK: Migratable TCP
socket in Linux”, February 2002.

Lee K. “Migsock vs Zap”, Carnegie Mellon Univer-
sity, Pittsburgh.

De Greve F., Van Quickenborne F,, De Turck F., Moer-
man I, and Demeester P. “Aggregation Network De-
sign for Offering Multimedia Services to Fast Moving
Users™. In Quality of Service in multiservice IP net-
works, Proceedings lecture notes in computer science.
Springer-Verlag Berlin, 2005.

Deboosere L., Simoens P., Dewinter D., and De Turck
F. “Dimensioning a Wide-Area Thin-Client Comput-
ing Network Supporting Mobile Users”. In Accepred
for publication at the International Conference on
Nerworking and Services, Silicon Valley, July 2006.

Lai A. and Nieh J. “Limits of Wide Area Thin Client
Computing”. In Proceedings of the ACM International
Conference on Measurement and Modeling of Com-
puter Systems, Marina del Rey, 2002.

Baratto R., Kim L., and Nieh J. “THINC: A Virtual
Display Architecture for Thin-Client Computing”. In
the Twentieth ACM Symposium on Operating Systems
Principles (SOSP 2005), Brighton, United Kingdom,
October 2005.

Baratto R., Potter S, Su G., and Nieh J. “MobiDesk:
Mobile Virtual Desktop Computing”. In Proceed-
ings of the 10th ACM International Conference on
Mobile Computing and Networking (MobiCom 2004),
Philadelphia, September 2004.

PSC'06

The 2006 International Conference on Pervasive
Systems &Computing

Foreword Author's Index

Session: MOBILE ACCESS + MOBILE DEVICES + MOBILITY
MANAGEMENT

T I n Energy—Awar ork ivation Strat for Multi-Homed Maobil
Devices

Mortaza S. Bargh, Arjan J.H. Peddemors

An Experimental Hardware Extension Platform for Mobile Devices in Smart Spaces

Marios Michalakis, Dimitris Kalofonos, Bahram Shafai

The Anatomy of a Universal Domotics Integrator for Globally Interconnected Devices

Driart Elshani, Pascal Francq

Srihari Narasimhan, Ralf-Peter Mundani, Hans—Joachim Bungartz

A Policy—Based Location Identification Architecture for Pervasive Systems

Sherif Aly

Mobile Access to Web Systems Using a Multi~device Interface Design Approach

Heloisa Vieira da Rocha, Rodrigo de Oliveira

Session: SENSOR NETWORKS + ADD HOC NETWORKS

M2MI Service Discovery Middleware Framework

Hans—Peter Bischof, Joel Donado

Distributed Pairwise Key Establishment in Wireless Sensor Networks

Yi Cheng, Dharma P. Agrawal

An Enery Efficient Data Query Protocol for Wireless Sensor Network Applications

Zhanyang Zhang

Session: ALGORITHMS AND TOOLS

Ubiguitous Seeuritv: Privacy versus Protection

Timothy Buennemeyer, Randolph Marchany, Joseph Tront

Modelling Application Handovers For Thin—Client Mobility

Pieter Simoens, Lien Deboosere, Davy De Winter, Filip De Turck, Bart Dhoedt, Piet Demeester
Design and Implementation of SONICA (Service Oriented Network Interoperability for

Component Adaptation) for Multimedia Pervasive Net vork

Hiroshi Hayakawa, Takahiro Koita, Kenya Sato

Real-Time Speaker Verification with a Microphone Array
Gang Mei, Roger Xu, Debang Lao, Chiman Kwan, Vincent Stanford

An Access Control Framework for Pervasive Computing Environments

Sarah Javanmardi, Hadi Hemmati, Rasool Jalili

A Real Time Scheduling Method for Emb Multimedia Applications
Byoungchul Ahn, Ji—Hoon Kim, Dong Ha Lee, Sang Hoon Lee
An Inexact M in hod B n Ontol d Semantic Di for R I

Discovery and Interaction
Tang Shancheng, Qian Yi, Wang Wei

A Chat-bot based Multimeodal Virtual Guide for Cultural Heritage Tours

Antonella Santangelo, Agnese Augello, Antonio Gentile, Giovanni Pilato, Salvatore Gaglio

Session: CONTEXT-AWARE AND RELATED ISSUES
The Design and Implementation of a Context—Aware Group Communication Svstem

Chichang Jou, Wei—Jiun Wang

A Context— re Handoff Management for mless Connectivity in Ubigui

Computing Environment
Tae—Hoon Kang, Chung—Pyo Hong, Yong—Seok Kim, Shin—Dug Kim

Design of an n Context—Aware Platform enablin k Sharing Offi ervices

Matthias Strobbe, Gregory De Jans, Jan Hollez, Nico Goeminne, Bart Dhoedt, Filip De
Turck, Piet Demeester, Thierry Pollet, Nico Janssens

The 2006 World Congress in Computer Science,
Computer Engineering, and Applied Computing

Monte Carlo Resort, Las Vegas, Nevada, USA
June 26~-29, 2006

Conferences:
The?2 International Conference on Bioinformatics omputational Biolo
The 2 International Conference on Computer Design & International Conference

n Computing in Nanotechnol

The 2 International Conference on Computer Graphics & Virtual Realit
The 2 International Conference on Communications in Computin

The 2 International Conferen n Scientifi mputin

The 2 nternational Conferen n Data Minin

The 2 International Conference on e~Learning. e-Business. Enterprise Information
stem ~Government i rein

The 2006 International Conference on Engineering of Reconfigurable Sysiems

Algorithms

The 2 International nference on Emb tem Application
The 2006 International Conference on Foundations of Computer Science

The?2 International Conference on Frontiers in Education: Computer Science

Computer Engineering

The 2006 International Conference on Grid Computin Application
The 2 niernation nferen Artificial Intelligen

T International Conferen rnet tin ternati] r

on Computer Games Development

The 2 international Conferen n Wireless Nelwork

The 2006 International Conference on Information & Knowledge Engineering

The 2 International Conference on Im Pr in mputer Vision, & Pattern
Recognition

The 2006 International Conference on Machine Learning; Models, Technologies
Applications

The 2006 International Conference on Modeling. Simulation & Visualization Methods

Th Internationa feren n Parallel & Distributed Pr in hnigue
Applications & International Conference on Real-Time Computin stems

Applications
The 2006 International Conference on Pervasive Systems omputin
The 2 International Conference on Securit Management

The 2 International Conference on Software Enai ring Research & Practi
international Conference on Programming Languages an ompilers

The 2 International Conference on Semantic Web & Web Services

Editor H.R. Arabnia
University of Georgia, GA, USA
Copyright by CSREA Press
ISBN: 1-932415-99-8

