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ABSTRACT

While the chip multiprocessor (CMP) has quickly become the predominant processor architec-
ture, its continuing success largely depends on the parallelizability of complex programs. In the
early 1990s great successes were obtained to extract parallelism from the inner loops of scientific
computations. In this paper we show that significant amounts of coarse-grain parallelism exists in
the outer program loops, even in general-purpose programs. This coarse-grain parallelism can be
exploited efficiently on CMPs without additional hardware support.
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1 Introduction

In the recent past the mainstream processor was one big monolithic processor core. Due to
power and performance issues, however, the industry moved to chips filled with multiple
simpler cores, the chip multiprocessors (CMP). In order to tap the full processing power of
a CMP one needs parallel programs. Since rewriting or developing programs with threads
and explicit synchronization is an intricate and time consuming job, a more attractive course
is automatic parallelization of sequential code. A lot of research has gone into finding loop-
level parallelism operating on array data structures. In contrast, this work focusses on ex-
tracting DO-ACROSS parallelism in the outer loops of the program, which corresponds
closely to pipeline-like operations on a data set.

2 Framework

This section describes the different stages of our framework [Rul06] that aid the programmer
in a partially automatic way to parallelize a program.
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Defining code regions As we are interested in coarse-grain parallelism, we record depen-
dences only between large regions of code. We consider three types of code regions: func-
tions, loops and snippets. Snippets are code fragments that contain memory references, but do
not contain loops or function calls. Thus, snippets are potentially data dependent on other
code fragments. The different code regions in a program are determined by a static analysis
and passed on to the profiler in the next stage.

Profiling dependences Instead of striving for exact (but conservative) static analysis of
programs, we employ dynamic control and data dependence analysis. This dynamic anal-
ysis turns out to correctly identify coarse-grain parallelism in practice. Indeed we have ob-
served that the coarse-grain dependencies between large code regions are very consistent
across program inputs. Yet, verification is still required.

The control dependences are tracked in order to respect the sequential semantics when
parallelizing a sequential program. Hereto, we structure the program as a tree where each
node in the tree corresponds to a previously defined code region. In case a code regions
has multiple children, the children are sorted in sequential order. The actual control flow
corresponds to tracing a path through the tree, where control flow can move down in the
tree (entering a sub-region of the current region) or it can move up in the tree (exit a region).

Data dependences indicate which code region (consumer) is reading a memory location
that was last written by a code region (producer). For each data object we record a memory de-
pendence matrix which scales dynamically based on the number of producers and consumers
for the data object in question. In a matrix the entry at row f and column g records the num-
ber of times that code region g consumed a value produced by code region f in that data
object. Statically allocated objects are retrieved from the symbol table of the program, while
dynamically allocated objects are identified during program execution by monitoring calls
to memory allocation routines (malloc, calloc, realloc, alloca and free). To know
the code region that was the last one to produce a value at a particular memory address
we use the last producer table. Note that the producers are tracked at the smallest writable
quantity (i.e. bytes) in order to correctly identify dependences. This is necessary since each
field of a data object can have a different producer.

Analyzing dependences Control and data dependences between code regions are recorded
in a joint control data dependence graph (JCDDG) (Figure 1). This graph contains rectangular
nodes which represents the code regions and elliptic nodes which represent the data struc-
tures. Code regions are linked by edges according to control flow (solid lines). Data flow
edges (dotted lines) indicate which functions access a data structure. The data flow edges
point from a function to a data structure when the function writes the data structure. The
data flow edge points from the data structure to a function if that function reads the data
structure. Data flow edges that are marked with “lc” are loop-carried data dependences.

The data dependences are also represented in an inter-procedural data flow graph (IDFG)
(Figure 2). The nodes represent code regions and an edge from F to G indicates that code
region G is consuming data produced by code region F . Note that the IDFG contains infor-
mation that is irreducible from the JCDDG. Based on the JCDDG one could presume that the
node J is data dependent on node M through data structure s. The IDFG, however, shows
no data stream directed from code region M to code region J .

The format of parallelism we are looking for is depicted in Figure 3. A loop contains mul-
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Figure 1: Joint control data dependence
graph
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Figure 2: Inter-procedural data flow graph

tiple code regions that are data dependent on each other, but has no interdependent clusters.
If there are loop-carried dependences, then they point from a code region to itself. To detect
this code template every loop in the JCDDG containing function calls is analyzed. We match
the code template to every loop in the program. Initially, every code region is a separate clus-
ter, so it is unlikely that the template matches, due to control flow or data dependences. To
improve this match, we iteratively merge clusters until the template matches. Each cluster
is treated as an indivisible unit of work, either because of control dependences or because of
data dependences in that cluster.

In the first step we cluster code regions based on control dependences. We recurse through
each of the child nodes and mark every node recursively as a member of the corresponding
cluster. If a node is reached that is already assigned to a cluster, then the clusters are merged.
The second step is to cluster code regions by data dependences. Hereto we start by mapping
the clustering of the JCDDG on the IDFG. The goal of this step is to remove data dependent
loops between clusters by merging the involved clusters. The algorithm to perform the clus-
tering by data dependences uses topological sorting of clusters and detection of connected
components to simultaneously sort the clusters by data dependences and merge mutually
dependent clusters. The result of the final clustering is depicted by the grey background in
Figure 1, resulting in the targeted code template of Figure 3.
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Figure 3: Code template
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Figure 4: Parallelization of code template

Parallelization The parallelism in a loop of the format of Figure 3 becomes apparent when
unrolling the loop (Figure 4). Here each row represents a different iteration, each column
represents a cluster of code regions and the edges between clusters are dependences. The
program is parallelized by executing instances of the clusters in different threads. A first



parallelization consists of a vertical division of dependences. We call this heterogeneous par-
allelization since each thread is running different code. Another possibility is a horizontal
division, where one thread handles a complete iteration, so called homogeneous paralleliza-
tion. A third possibility, composite parallelization, is only feasible when only the first and last
stage have loop-carried dependences. In that case the there is one fetch thread (first stage),
several worker threads and one write thread (last stage). The data objects involved in the
parallelization can be deduced from the JCDDG.

3 Evaluation

Figure 5 shows for several benchmarks the outer parallel loops that were detected. Each part
of the bars correspond to the execution time of the sequential part of the program or one of
the parallelizable loops. We show for each loop its original execution time (S: sequential
version) and its estimated reduced execution time (P : parallel version). For DO-ACROSS
loops tpar = t1iter + (n− 1)tlcmax, where n is the number of iterations and tlcmax the execution
time of the most time-consuming cluster with loop-carried dependencies.
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Figure 5: Relative execution time of detected pipelines in sequential execution (S) and in
parallel execution (P )

The benchmarks on the right-hand side contain more coarse-grain parallelism and are
more suitable for parallelization. On an 8-core Sun UltraSPARC T1 processor we have ob-
tained speedup results of factor 5 to 12 for that group of programs.

4 Conclusion
We presented a framework for extracting coarse-grain parallelism from a sequential pro-
gram using dynamic analysis techniques for obtaining precise control and data dependence
information. Interdependent code regions in loops are recursively merged until the overall
loop structure matches a preset template which can be parallelized.
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