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Introduction

Frequency domain EFIEs discretized via the method of moments have long been used
to simulate time harmonic scattering from perfect electrically conducting (PEC) sur-
faces. Unfortunately, at low frequencies, the resulting method of moments matrices
become ill conditioned; this phenomenon is known as low frequency breakdown.
Recently, an analytical preconditioner for the frequency domain EFIE [1, 2] that
alleviates this problem was developed by leveraging the Calderón identities [3]. Not
surprisingly, time domain EFIEs for analyzing transient scattering from PEC sur-
faces that are discretized via marching on in time (MOT) recipes also suffer from low
frequency breakdown; this phenomenon manifests itself in terms of ill-conditioned
MOT equations for large time steps. Here, an analytical preconditioner for the time-
domain EFIE is developed. First, a time-domain operator identity that enables the
construction of an analytically preconditioned time domain EFIE is constructed.
Second, a procedure for efficiently discretizing this new time domain EFIE is eluci-
dated. Numerical results that demonstrate the performance of the new analytical
preconditioner are presented.

Equations and Discretization

Consider a closed PEC surface S with external normal n̂, which is illuminated by a
transient electric field Ei(r, t). The “derivative form” of the time-domain EFIE for
the current on S, J(r, t), reads

ṪJ = Ṁ
i
. (1)

Here M i(r, t) = −n̂ × Ei(r, t) represents the excitation and the operator T maps
J(r, t) to the scattered field n̂×Es; T can be decomposed as

TJ = ThJ + TsJ (2)

where

TsJ = −1
c
n̂×

∫
S

ds′
δ̇(t−R/c)

4πR
∗ J(r′, t) (3a)

ThJ = cn̂×
∫

S
ds′∇H(t−R/c)

4πR
∗ ∇′ · J(r′, t). (3b)

Here H is the Heaviside function, δ is the Dirac impulse, and “∗” denotes tem-
poral convolution. The capacitive part Th of this operator is hypersingular with
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a nontrivial nullspace. Discretizing equation (1) using the standard MOT recipe
yields

j−1∑
k=0

Zk · Ij−k + Vj = 0, j = 1...NT (4)

where (Zk)m,n =
〈
b′ml′j |Ṫ |bnlj−k

〉
and (Vj)m = −

〈
b′ml′j |M i

〉
; b′m and bn are spatial

basis and testing functions and l′j and lj−k are temporal ones. Successively solving
these equations for j = 1, ..., NT is equivalent to solving the lower triangular block
matrix equation 

Z0

Z1 Z0

Z2 Z1 Z0

...
...

...
. . .




I0
I1
I2
...

 +


V0

V1

V2
...

 = 0. (5)

When the speed of light times the timestep is much larger the spatial element size,
the block matrix on the left side of (5) becomes ill-conditioned.

In the frequency domain, the Fourier transforms T , Th, and Ts of the operators
T , Th, and Ts are used in constructing the frequency domain EFIE. The following
Calderón identity holds [3]:

T 2 = K2 − 1
4
I. (6)

Here, I is the identity operator on the space of time-harmonic current distributions
and K is the compact operator defined in [3]. It follows from (6) that T 2 is a
second kind operator. Letting this operator act on an arbitrary surface distribution
yields an equality between functions. By computing the inverse Fourier transform
of both sides, a time-domain counterpart of the Calderón identity is obtained. To
avoid Heaviside functions as convolution kernels, the second time derivative of the
time-domain identity is used

Ṫ 2J = K̇2J − 1
4
Iδ̈(t) ∗ J . (7)

Leveraging techniques leading to the construction of analytically preconditioned
frequency domain EFIEs, this equation inspires the definition of the following new
time-domain EFIE:

Ṫ 2J = ṪṀ
i
. (8)

This equation is of “the second kind”. Therefore, it is expected to be better condi-
tioned than the original time-domain EFIE. Upon discretizing, (8) yields a system
similar to (5). The MOT recipe can be used to expand J(r, t) and to test the
equation. Because discretizing the complete operator Ṫ 2 is too cumbersome, the
two factors will be discretized separately. This amounts to expanding the identity
operator “in between” in a suitable set of basis functions. Moreover, this has to
be done in such a manner that the good properties of the operator Ṫ 2 are con-
served. By inspecting the definitions (3), it is recognized that the spatial behavior
of the operators Ts and Th resembles that of their frequency domain counterparts.
In particular, the actions of these operators on the curl- and divergence-free sub-
spaces of surface distributions is the same as in the frequency domain. From this,
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it follows that in the discretization of the spatial part of the “identity in between”,
techniques similar to those adopted in the frequency domain [1], can be used in the
time-domain. This means that the spatial part of the domain and range space of
Ṫ 2 is well approximated by Rao-Wilton-Glisson basis functions fm. The interme-
diate space is best described by rotated RWG functions n̂ × fm. This leaves us
with chosing a suitable set of temporal basis functions. From [4], it is clear that
Lagrange interpolants Li(t) = L(t − i∆t) are good candidates to describe a causal
bandlimited function of time. On the other hand, if we want to arrive at the strictly
lower triangular form of (5), we need to test the two operators Ṫ with a Dirac im-
puls δj(t) = δ(t − j∆t). As a consequence, the temporal part of the intermediate
space is described with two different sets of basis functions. The range of the right
Ṫ in (8) is described with Dirac impulse functions and the domain of the left Ṫ is
decomposed using Lagrange interpolants Li. Since for small timesteps, the quotient
Li/∆t limits to a Dirac impulse, this dual approach causes no problems and the two
sets of basis functions can describe the same intermediate space. Finally, a generic
element of the discretized Ṫ 2 can be cast as

< fmδj |Ṫ 2|fnLi >=< fmδj |Ṫ |n̂× fpLr > (G−1
S )p,q(G−1

T )r,s < n̂× f qδs|Ṫ |fnLi >
(9)

where summation over recurring indices is understood and (GS)m,n =< fm|fn >
and (GT )i,j =< Li|δj > are spatial and temporal Gramm matrices. As can be
readily verified, the temporal Gramm matrix equals the identity. As can be seen
from (9), the new system block matrix is the product of two different discretizations
of the Ṫ operator W0

W1 W0

...
...

. . .

 =

 Z0
l

Z1
l Z0

l
...

...
. . .

 ·G−1
S ·

 Z0
r

Z1
r Z0

r
...

...
. . .

 . (10)

Here, the Zk
l and Zk

r blocks stem from the discretization of the left and right Ṫ
operator and Wk = Z0

l ·G−1
S ·Zk

r + ... + Zk
l ·G−1

S ·Z0
r . The new system matrix is the

product of two complete MOT system matrices. However, if our primary goal is to
cure the condition number of the system (5), we only need to alter the block Z0.
Indeed, in the MOT scheme, this is the only block that has to be inverted. Inspired
by this observation, the system matrix W0

W1 W0

...
...

. . .

 =

 Z0
l

Z0
l

. . .

 ·G−1
S ·

 Z0
r

Z1
r Z0

r
...

...
. . .

 (11)

is used. Now Wk = Z0
l · G−1

S · Zk
r . The advantage of this approach (which will

henceforth be referred to as time-localized preconditioning) is that it retains the
benevolent effect on the condition number of the system block matrix in general
and Z0 in particular, without introducing the computational burden of computing
complete expressions for Wk. The eigenvalues of a triangular block matrix are com-
pletely described by the eigenvalues of the blocks that are located on the diagonal.
The new system (11) and (10) equally affect the condition number of the system
block matrix. If an iterative solver is used, the decrease in the number of iterations
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Figure 1: Condition number and backscattered far field.

will be the same. However, if we want to address the stability issue for the MOT, it
is expected that in order to obtain benefits, the entire block matrix (10) has to be
used, as all blocks Zk are involved.

Numerical Results

A simulation using the system (5) is compared to one using (11). The geometry
is a sphere of radius 0.25m. This sphere is discretized using 170 triangular surface
patches with 255 unknowns. The incident wave is a base-band Gaussian

Ei(r, t) =
4

T
√

π
x̂e−γ2

(12)

with γ = 4
T (ct− ct0 − ẑ · r), T = 200 meter, and t0 = 300 lightmeter. In figure 1(a)

the condition number is plotted versus the sampling frequency 1/dt. The condition
number of the preconditioned system is quasi independent of ∆t. In figure 1(b),
the backscattered far field obtained from a EFIE simulation and a modified EFIE
simulation are plotted versus time. The timestep used is 5 lightmeter.
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