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Abstract

This paper describes a phrase-based ma-
chine translation approach to normalize
Dutch user-generated content (UGC). We
compiled a corpus of three different so-
cial media genres (text messages, message
board posts and tweets) to have a sample
of this recent domain. We describe the var-
ious characteristics of this noisy text ma-
terial and explain how it has been man-
ually normalized using newly developed
guidelines. For the automatic normaliza-
tion task we focus on text messages, and
find that a cascaded SMT system where a
token-based module is followed by a trans-
lation at the character level gives the best
word error rate reduction. After these ini-
tial experiments, we investigate the sys-
tem’s robustness on the complete domain
of UGC by testing it on the other two so-
cial media genres, and find that the cas-
caded approach performs best on these
genres as well. To our knowledge, we
deliver the first proof-of-concept system
for Dutch UGC normalization, which can
serve as a baseline for future work.

1 Introduction

In the past two decades, many resources have been
invested to develop state-of-the-art text processing
tools for Dutch1. Similar to other reported lan-
guages, these tools, which have all been devel-
oped with standard text in mind, show a signif-
icant drop in performance when applied to user-
generated content (UGC). This is for example the

1Among others, in the framework of the STEVIN pro-
gramme, see Spijns and Odijk (2013) for an overview.

case when applying parsing (Foster et al., 2011) or
named entity recognition (Liu et al., 2011b; Ritter
et al., 2011) to Twitter data. Typical problems that
hinder automatic text processing include the use
and productivity of abbreviations, deliberate mis-
spellings, phonetic text, colloquial and ungram-
matical language use, lack of punctuation and in-
consistent capitalization.

No systems currently exist to automatically nor-
malize Dutch noisy text into its standard equiva-
lent. In order to develop a system which can han-
dle different types of user-generated content, we
collected and studied three social media genres:
text messages, message board posts and tweets. In
this paper, we investigate the viability of adopting
a character-based machine translation approach to
the normalization task. This is different from
previous research investigating MT approaches
for normalization, which has mainly focused on
token-based translation (Aw et al., 2006; Kobus et
al., 2008).

For our experiments we first focus on the genre
that poses the largest number of normalization
challenges in our corpus, namely text messages,
in order to have a proof of concept. We will show
that a cascaded SMT system with a token-based
module followed by a transliteration at the charac-
ter level yields the best results, i.e. a 63% drop in
word error rate. In this cascade, the first module
aims at obtaining high precision, thus presenting
high-confidence translations. The second module
further improves this output by generalizing over
character mappings.

To conclude, we applied this proof-of-concept
system tuned for text messages to the other genres
and observed similar improvements.

The paper is structured as follows. After the lit-
erature overview (Section 2) we discuss the social
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media genres used, their characteristics and how
these have been normalized in Section 3. The set-
up and experiments are presented in Section 4. We
examine the results in Section 5, perform a quali-
tative error analysis in Section 6 to end with some
conclusions and prospects for future work in Sec-
tion 7.

2 Related Work

Traditionally, the task of text normalization is a
crucial first step for every text-to-speech system,
in which specific numbers and digit sequences,
acronyms, etc. need to be rewritten in order
to have them pronounced correctly. A thorough
overview of the main characteristics and bottle-
necks can be found in Sproat et al. (2001).

More recently, however, the surge of user-
generated content has introduced new problems
such as non-existent abbreviations and deliberate
misspellings. This reality combined with the need
to process UGC data has revived the interest in
normalization techniques. In this regard, we can
define three dominant approaches to transfer noisy
into standard text. These are referred to as the
spell-checking, machine translation and speech
recognition metaphors (Kobus et al., 2008).

The most intuitive way of normalizing text
would be to approach the problem as a spell-
checking one where noisy text has to be trans-
formed to standard text using noisy channel mod-
els. Choudhury et al. (2007), for example, pro-
posed a supervised noisy channel model using
Hidden Markov Models to calculate the proba-
bility of less frequent words. Extensions to this
approach were made by studying word processes
(Cook and Stevenson, 2009), adapting weighted
finite-state machines and rewrite rules (Beaufort et
al., 2010) or by adding other elements such as or-
thographic, phonetic and contextual factors (Xue
et al., 2011).

Another approach is using statistical machine
translation (SMT) techniques for text normaliza-
tion. Previous work in this field has mostly fo-
cused on phrase-based machine translation at the
word level. Aw et al. (2006) were the first to com-
pare dictionary substitution using frequencies with
phrase-based machine translation. They revealed
that SMT improves BLEU scores for English SMS
translation. Also working on English text, Raghu-
nathan et al. (2009) confirmed that using an SMT
system outperforms a dictionary look-up, most no-

tably when used on an out-of-domain test set.
Kobus et al. (2008) followed the same ap-

proach but combined the machine translation fea-
tures with a speech recognition approach using
HMMs on a French corpus. They concluded that
the two systems perform better on different as-
pects of the task and that combining these two
modules works best.

A different way of approaching normalization
is the work by Liu et al. (2011a; 2012). They
propose a cognition-driven text normalization sys-
tem using an unsupervised approach. By observ-
ing and simulating human techniques for the nor-
malization task, they avoid dependence on human
annotations. They construct a broad-coverage sys-
tem to enable better word-coverage, using three
key components: enhanced letter transformation,
visual priming and string/phonetic similarity.

If we consider normalization, the task intu-
itively has a lot in common with transliteration
tasks for which character-based SMT systems
have proven adequate (Vilar et al., 2007). Pennell
and Liu (2011) were the first to study character-
based normalization. They, however, limited their
approach by only focusing on abbreviations.

In this paper, we propose a cascaded model that
follows a machine translation approach and tries
to tackle the full range of normalization problems.

3 Three Genres of UGC

In order to normalize using a machine translation
system, and to evaluate the performance, it is es-
sential to build a gold standard data set that can
serve as training and test material. As far as we
know, no such data set is currently available for
Dutch.

3.1 Corpus Compilation

To ensure that our corpus is representative of the
domain of user-generated content (UGC), we de-
cided to include three different social media gen-
res: text messages (SMS), message board posts
from a social networking site (SNS) and tweets
(TWE). As text messages, we sampled 1,000 mes-
sages from the Flemish part of the SoNaR corpus
(Treurniet et al., 2012), aimed at a balanced spread
of two characteristics: age and region. In order to
also include longer streams of UGC, 1,505 mes-
sage board posts were randomly selected from the
social networking site Netlog, which is popular
amongst Belgian teenagers. In order to take into



ORIGINAL NORMALIZED TRANSLATED
SMS Oguz ! Edde me Jana

gesproke ? En ze flipt lyk
omdak ghsmoord heb .. !

Oh gods ! Heb je met
Jana gesproken ? En ze
flipt gelijk omdat ik gesmo-
ord heb ... !

Oh god ! Did you speak to
Jana ? And she’s flipping be-
cause I smoked ... !

SNS schaaaat , Je komt wel boven
die Blo , je et em nii nodig
wie jou laat gaan is gwn
DOM :p Iloveyouuuu hvj

schat , Je komt wel boven die
Blo , je hebt hem niet nodig
wie jou laat gaan is gewoon
dom :p I love you hou van je

honey, You’ll get over that
Blo, you don’t need him
whoever lets you go is just
stupid :p I love you I love
you

TWE @minnebelle top ! Tis voor
m’n daddy !

@minnebelle top ! Het is
voor m’n daddy !

@minnebelle great ! It is for
my daddy !

Table 1: Examples of UGC from the three social media genres representing the original utterance, its
normalized version and an English translation

account the vast amount of normalization research
done on Twitter data, we also included 246 ran-
domly selected tweets. It is to be noted, how-
ever, that average Twitter content in Belgium dif-
fers from that in English-speaking countries or
The Netherlands, because Twitter has mainly been
adopted amongst professionals. An example of
each genre can be found in the left column of Ta-
ble 1.

These examples clearly illustrate the main char-
acteristics of Dutch UGC, most of which are sim-
ilar to previously reported problems in other lan-
guages (Baron, 2003; Beaufort et al., 2010).

Some of the more well-known problems include
the omission of words or characters, e.g. the omis-
sion of the final n in gesproke (Eng: spoke versus
spoken). The frequent use of abbreviations and
acronyms, such as gwn, hvj (Eng: LOL), which
are highly productive. Moreover, many utterances
deviate from the standard spelling at the lexical
level, such as lyk instead of gelijk (Eng: luv ver-
sus love) or by writing colloquially, e.g. et em in-
stead of hebt hem (Eng: you iz vs you are). In
UGC, emotions are also expressed by using flood-
ing (repetition of the same character or sequence,
baaaaaaby), emoticons (:p) and capitalized letters
(STUPID).

More specific to the Dutch language is the con-
catenation of tokens which leads to the elimination
of clitics and pronouns (Edde instead of Heb je,
khou instead ik hou, Tis instead of Het is). More-
over, the influence of the English-speaking world
on Belgium and the fact that it is a trilingual coun-
try often leads to various languages within a sin-
gle utterance, which are often adapted to Dutch

aspects (Oguz, daddy, we are forever).

3.2 Corpus Annotation
All text material was annotated by two annotators,
independently of each other using newly devel-
oped normalization guidelines. These guidelines,
tailored for Dutch, have been drawn up in close
collaboration with the developers of the Chatty
Corpus (Kestemont et al., 2012).

The guidelines can be roughly divided into two
parts. The first part consists of the actual text nor-
malization and comprises three steps: clearing all
obvious tokenization problems, stating the differ-
ent normalization operations and writing down the
full normalized version. We allow four different
operations: insertions, deletions, substitutions and
transpositions; examples of tokens requiring these
operations are given below (in English).

• INS: spoke (spoken), sis (sister)

• DEL: baaaaabyyyy (baby)

• SUB: iz (is), stoopid (stupid)

• TRANS: liek (like)

Insertions allow to indicate missing characters
in a string. Deletions are used when characters
should be deleted from a certain string. Substitu-
tions are used when a character has been replaced
with another similar one. Finally, transpositions
are used when a combination of characters should
be switched within one string.

The second part consists of flagging additional
information that might be useful for automatic
processing purposes. Within each utterance the



Genre # Before After % #INS #DEL #SUB #TRANS
SMS 1000 16630 17194 3.39 3622 338 547 57
SNS 1505 31513 32221 2.25 4165 1500 1692 57
TWE 246 3276 3357 2.47 923 67 127 4

Table 2: Data statistics of the three genres of UGC. The left-hand side shows the number of tokens before
and after normalization and the increase in %. The right-hand side visualizes the actual normalization
effort expressed in the number of operations.

annotators were asked to indicate the end of a
thought (to account for missing punctuation), re-
gional words, foreign words and named entities.
They could also flag words that are ungrammati-
cal, stressed, part of a compound, used as interjec-
tions or words that require consecutive normaliza-
tion operations.

To check the reliability of our annotation guide-
lines, the two annotators each normalized the
1,000 text messages. We estimated the inter-
annotator reliability by computing the word error
rate (cf. infra) between the two fully normalized
versions. The WER was 0.048, which indicates
near-perfect overlap.

In order to give an idea of the normalization ef-
fort required, we present some data statistics for
each genre in Table 2. The left-hand side visual-
izes the increase in the number of tokens before
and after normalization in absolute numbers and
percentage-wise. On the right one can see the ac-
tual normalization effort, which is expressed by
the number of individual operations. The normal-
ized versions of the previously mentioned exam-
ples can be found in the middle column of Table
1 and their translation to English in the right col-
umn.

For the experiments presented in this paper we
work with the first part of the manual normaliza-
tion (ignoring flagging information such as ends
of thought). We chose to focus on SMS, because
it was the noisiest data in our corpus, with a token
increase of 3.39% (see Table 2).

4 System Architecture

Using SMT for noisy text normalization can be
done at various levels of granularity. The ad-
vantage of working at the token level is that the
high-frequency words and abbreviations can be
translated in context, which outperforms a simple
dictionary look-up (Raghunathan and Krawczyk,
2009). However, working at the character level
allows one to generalize over character mappings

which makes the system more robust (Pennell and
Liu, 2011).

Prior to any sort of learning, we adapted our to-
kenizer to be able to handle emoticons, hyperlinks,
hashtags and at-replies. Similar to Beaufort et al.
(2010), we devised some rewrite rules: we decided
to tackle the flooding of characters before translat-
ing in order to avoid too many confounding fac-
tors. Characters and character sequences were al-
lowed to occur twice consecutively, at maximum.
A higher number of repetitions was reduced to
two. The validity of this approach was checked
by running the rewrite module on the CELEX
database (Baayen et al., 1995), which contains
381,292 valid Dutch words, including inflections.
Only two (highly infrequent) entries were changed
by the module, which confirms that it virtually
does not overnormalize.

After this preliminary preprocessing, the noisy
text is processed by two modules. First, the
standard phrase-based SMT approach at the to-
ken level is used to ensure the translation of the
more frequently used abbreviations (such as fb for
facebook and other highly frequent normalization
problems, e.g. tht for that). Afterwards, the trans-
lated text is split into characters and a translation
at the character level takes place. This intuitively
makes sense, because transformations at the char-
acter level are more likely to be reproduced than
a combination of possible transformations at the
word level. Trying to generalize such character
transformations at the word level would probably
fail due to data sparseness. We worked with both
character unigram and bigram translation mod-
els. Bigrams supposedly have the advantage that
one character of context across phrase boundaries
is used in the selection of translation alternatives
from the phrase table (Tiedemann, 2012). This
means that more precise translations will be sug-
gested.

For our experiments we first focus on the in-
dividual performance we can achieve within the



SMS genre, after which we test this approach on
the other genres to see whether it is possible to cre-
ate a robust system that can process all three UGC
genres.

To evaluate our approach, both the Word Er-
ror Rate (WER) and BLEU scores were calcu-
lated. WER, an evaluation metric that is based
on edit distance at the word level, is very well
suited for the evaluation of NLP tasks where the
input and output strings are closely related. As
a consequence, the metric is used for the evalua-
tion of optical character recognition (Kolak et al.,
2003), grapheme-to-phoneme conversion (Dem-
berg et al., 2007), diacritization (Schlippe et al.,
2008) and vocalization of Arabic (Kübler and Mo-
hamed, 2008). The BLEU metric, which has
been specifically designed for measuring machine
translation quality, measures the n-gram overlap
between the translation being evaluated and a set
of target translations. We therefore believe that
BLEU is less appropriate for evaluation in the cur-
rent set-up, but we include it for comparison’s sake
(as other systems mention it such as Aw et al.
(2006), Kobus et al. (2008), etc.).

5 Experimental Set-up and Results

For all experiments, we used the Moses SMT sys-
tem (Koehn et al., 2007). As a target corpus for our
language model, we used the Spoken Dutch Cor-
pus (Corpus Gesproken Nederlands, CGN (Oost-
dijk, 2000)) since spoken language could better re-
flect the language used in UGC. The target train-
ing data was also added to the model. All language
models were built using the SRILM toolkit (Stol-
cke, 2002) with Witten-Bell discounting which
has been proven to work well on small data sets
(Tiedemann, 2012)

We experimented with different translation
models. The token-level translation model was
each time built using Moses with standard settings
and a 5-gram language model. For the character-
level model the same Moses setting was used. For
the language model we experimented with differ-
ent sizes of n on our training data, 5 - 7 - 10 - 15,
and found that a 10-gram language model gave the
best results.

For the first set of experiments (Section 5.1),
training was performed on the SMS data, which
was divided into three data sets: 625 messages
for training, 125 for development and 125 for test-
ing. In order to estimate the system’s robustness to

unseen genres, the SMS-tuned system was tested
on the other two genres, 125 SNS posts and 125
tweets (Section 5.2).

5.1 Results on SMS

This is, to our knowledge, the first study on Dutch
text normalization, so there is no basis for com-
parison to other systems. Figure 1 present a visual
overview of the different set-ups’ performance on
the Dutch SMS data. We start by reporting the dif-
ference between the original source and target text
(A) as well as a baseline where only the rewrite
rules have been applied (B). We see that a moder-
ate improvement in WER, from 21.70 to 21.47%,
already occurs by eliminating flooding.
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Figure 1: Visualisation of the WER reduction on
the SMS data set using our seven different set-ups

In the next step, the various translation models
were trained and tested and we clearly see that
all the following results outperform the baseline.
The token-based model (C) accounts for a mod-
erate improvement but clearly the character-based
models, both with unigrams (D) and bigrams (E),
perform much better. Introducing the unigram and
bigram cascaded models leads to the best results
(F and G). The best result is reached by the cas-
caded unigram model (F). This model has a WER
of 13.11 which is a 63% drop in word error rate
over the baseline and 56% over the non-cascaded
word level SMT.

If we perform the same analysis on the BLEU
results (Figure 2), we observe a different tendency.
Clearly, the token-based model (C) accounts here
for the best performance whereas the cascaded un-
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Figure 2: Visualisation of BLEU on the SMS data
set using our seven different set-ups

igram model (F) only achieves the second best re-
sult. This could be explained by the inherent dif-
ferences between the metrics. WER is based on
the edit distance whereas BLEU measures n-gram
overlap. This means that the output of the uni-
gram cascaded model can be closer - but not per-
fect - to the reference than the output from the
token model. If we consider the example below
from our data we see that the token model was not
able to find the correct version, whereas the cas-
caded unigram output is already a bit closer. If
we would then feed this closer version back into
our token model it should be able to resolve it cor-
rectly2. This insight could be used to improve our
system by extending the cascaded unigram mod-
ule with another run of the token-based system in
future work.

• original: laatk – target: laat ik

• output C: laatk – output F: laat k – output C
based on output F: laat ik

All experimental results on the SMS data, ex-
pressed both in WER and BLEU, can be found in
Table 3.

5.2 Results on three genres of UGC
By testing our translation models tuned for text
messages on the other two genres, we aim to ver-
ify the robustness of our approach. These results
can be found in Table 3.

2Proof of this was found in the output of our token-based
system.

Applying the baseline system with rewrite rules
gives the same minor positive effect for SNS as
for SMS, compared to the original source and tar-
get text. For tweets, on the other hand, no im-
provement is noted. Upon closer inspection of the
Twitter data, not a single instance of flooding was
found, which explains this status quo.

When comparing the other models, the same
evolution in word error rate can be observed. For
each genre, the best WER reduction over the base-
line is reached with the cascaded unigram model,
namely 63% for SMS, 39% for SNS and 28% for
TWE. For the SNS data, the cascaded unigram and
bigram translation models give an equal perfor-
mance.

6 Error Analysis

We performed a qualitative error analysis of our
best performing set-up, i.e. the cascaded unigram
approach (F). After close inspection of the out-
put on the SMS test data we learned that the sys-
tem was able to locate and resolve 172 of the 320
words requiring normalization. Besides this, the
system also generated 51 false positives, which
leads to a precision of 77.13%, a recall of 55.66%
and thus an overall F-measure of 64.66%.

In order to gain more insights, the instances
our system missed were classified in two ways.
We first inspected which types of operations seem
most difficult to resolve (cf. Section 3.2 ).

Operations Total Absolute Relative
required # missed # missed

INS 549 270 49%
DEL 28 20 71%
SUB 55 30 54%
TRANS 11 6 54%

Table 4: Absolute number of the operations
missed at the character-level together with the rel-
ative number when compared to the total number
of operations

Since one word may need multiple or different
operations3, this was calculated at the character
level. Table 4 presents the number of operations
missed by our system both in absolute and relative
numbers.

At first sight, especially the deletions seem hard
to resolve, followed by the substitutions and trans-

3For example sis requires three insertions and luv requires
both a substitution and an insertion.



Training Set-ups Testing
SMS SNS TWE

WER BLEU WER BLEU WER BLEU
A. Original 21.70 65.54 20.41 66.03 13.26 76.10
B. Baseline 21.47 65.64 20.36 65.93 13.26 76.10
C. Token-level only 20.41 76.04 25.03 73.26 19.03 78.32
D. Unigram only 14.93 66.45 15.41 64.02 13.52 66.29
E. Bigram only 15.90 64.26 15.17 63.94 14.08 65.50
F. Cascaded unigram 13.11 69.48 14.59 65.17 10.35 72.25
G. Cascaded bigram 14.65 66.55 14.59 64.79 10.36 72.25

Table 3: Results of the different set-ups on the SMS genre

positions. When taking the absolute numbers into
account, however, proportionally these classes are
much less frequent than the total number of inser-
tions needed (549 to be exact). Apparently our
system is able to resolve most of these insertions
(i.e. 51%). On closer inspection, however, we
found that the system is especially good in nor-
malizing shorter words requiring only one or two
insertions, such as eb for heb, nie for niet, and not
in building longer words such as gr for groetjes. If
we extrapolate this finding to the number of inser-
tions needed at the word level, we indeed discov-
ered that at the word level 60% gets successfully
resolved. Another observation at the word level is
that words requiring different types of operations
are difficult for our system: only 44% is success-
fully replaced.

The second error classification consists of a
more linguistically motivated subdivision. In-
spired by the work of Androutsopoulos (2007), we
defined three categories: abbreviation (ABBR),
phonetic (PHON) and orthographic (ORTH) is-
sues. Examples of some instances our system
missed following this classification are presented
in Table 5.

Classes Output Correct
ABBR aug augustus
PHON hebk heb ik
ORTH uan van

Table 5: Missed instances according to error clas-
sification 2

This classification is visualized in Figure 3,
where we see that especially resolving phonetic
problems seems difficult for our system, i.e. 103
instances. In order to better grasp this we had
a closer look at the various phonetic issues and

ABBR

PHON

ORTH

Figure 3: Pie chart visualizing the number of
missed instances according to the second error
classification

further classified these into fusions (concatena-
tions of words, 25%), omissions (missing char-
acters, 43%), equivalents (characters referring to
the same sound, 26%) and onomatopoeias (sounds
like, 6%). Especially the omission of characters
seems problematic, which is consistent with the
high number of missed insertions (i.e. 270 charac-
ters).

This error analysis indicates that our system
might benefit from including other modules be-
sides machine translation. The orthographic issues
might probably be resolved using a spell checker,
whereas the phonetic ones, especially the equiv-
alents, might benefit from grapheme-to-phoneme
conversion.

As far as the hypercorrections are concerned



(our system generated 51 false positives), we
found that 15 of these are actually named entities
or foreign words which should not be normalized
at all. This is why we are also thinking of expand-
ing our preprocessing module so that these words
can be filtered out before processing them with the
other modules.

7 Conclusion and Future Work

In this paper, we have discussed a cascaded ma-
chine translation approach to normalize Dutch
user-generated content (UGC). Three social media
genres have been collected and normalized using
newly developed guidelines. After a short descrip-
tion of the main normalization errors and charac-
teristics of this particular domain, we investigated
the viability of an SMT approach at the character
level.

Experiments on text messages, the genre re-
quiring most normalization, revealed that a cas-
caded model where a token-based module is fol-
lowed by a translation at the character level yields
the best results. Testing this model on two other
genres revealed the same trend, which indicates
that this approach is robust across genres. To
our knowledge, we have developed the first proof-
of-concept system for Dutch UGC normalization,
which can serve as a baseline for future work. A
first error analysis revealed that our best system al-
ready reaches an F-measure of 64.66%. Looking
at the different operations, insertions occur most
frequently. Moreover, it appears that our system is
best at resolving smaller words requiring only one
or two insertions. When we analyzed the output
in a different way, especially the high number of
phonetic alternations remaining unresolved drew
our attention.

For future work we believe that incorporating
other modules into our system will further in-
crease the overall performance. Considering the
error analysis, we feel that a combination of the
three metaphors (machine translation, spell check-
ing and speech recognition) might produce an op-
timal combination of various features. Moreover,
sometimes we would like to introduce a second
round through some modules to tackle module-
specific problems. In order to really evaluate the
ability to generalize over multiple genres we are
currently training and testing our system on the
individual text genres. Since we aim to make a
system that can handle UGC, we also envisage to

combine our three genres and thus experiment on
the full set. First experiments have revealed that
this does indeed increase overall performance. For
now, we have only focused on normalization at
the lexical level, so colloquial and ungrammati-
cal language usage also presents an interesting al-
ley for future work. Since previous work on En-
glish text normalization using MT approaches at
the character-level has only focussed on abbrevia-
tions (Pennell and Liu, 2011), we would also like
to investigate whether our methodology can be ap-
plied to English noisy text as well.

We are looking for ways to make our data sets
publicly available.
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