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Abstract

Algorithmic information transfer has been theoretically shown to detect di-
rected dependency or causality in bivariate signals in an optimal way. Here its
practical use in a non-ideal setting is investigated. First we show the close connec-
tion to the common tests for directed interactions. Subsequently, consequences of
model non-ideality is described and a deep connection between regularization and
(directed) independence tests is concluded. Thereafter, a directed independence
test is constructed to detect the presence of phase coupling between two oscilla-
tors using support vector regression. Finally the algorithm is used to determine
moments of interaction for dynamic-coupled harmonic oscillators, by exploiting
full length information of the signals.

1 Introduction

Characterization of bivariate interaction has been investigated in different scientific
fields such as climatology [20], electronics [2] and the cardio-respiratory system [12].
Of special interest is the detection of communication between different human brain
areas [22, 5, 3] relative to different pathologies.

From a mathematical point of view, measuring directed dependencies or causalities is
studied in a purely statistical sense in [13, 19, 14, 11]. In [6] the idea of predictabil-
ity improvement is used to define general Granger causality. In [1, 9] predictability
improvement is defined by data compression lengths. In this way the detection of
directed dependence is linked to general machine learning principles: minimum de-
scription length and universal sequence prediction [7, 18].

From the practical point many algorithms exist to detect non-directed interactions:
cross-correlation, coherence and mutual information. To detect directed interactions,
linear Granger causality, Geweke’s spectra and information transfer is used. Recently
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new nonlinear techniques have been studied based on analysis in state spaces and inves-
tigation of phase evolution mapping which have been compared in [16] but confidence
bounds are very cumbersome.

In [1] optimal independence tests are investigated which have the notion of confidence
bounds as defining property. The optimal test is shown to be algorithmic mutual
information and can be decomposed as the sum of tree tests: common simultaneous
information and directed independence in both directions. To evaluate these tests
in practice, actual data compressors are used approximating ideal compressors. It
has been shown that improved modeling corresponds to improved compression and
otherwise around [21, 7].

• General modeling techniques can be used to evaluate the tests. Any improvement
in modeling results in an improved test.

• Different modeling techniques are easily combined to obtain improved tests.

• Provided an accurate modeling, the test has simple generic confidence bounds.

• The system is parameter free, the optimal value of any model-parameter can be
found by optimizing description length.

An important problem is the investigation of nonstationary oscillatory signals. Tra-
ditionally one tries to construct tests that conclude directed independence using as
few data as possible [17]. By applying the algorithm in a limited time window one
tries to answer the question at which moments an influence exists. Here we take an
alternate approach and take advantage of information during previous time intervals
to increase the temporal resolution of the found interactions and show that even for
weak interactions a serious decrease in sample length is possible.

2 Algorithmic Information Transfer

Algorithmic information transfer is introduced as a directed independence tests. It
is part of a decomposition of the universal undirected independence test. First we
start with a short introduction on algorithmic complexity. Definitions and proofs of
theorems can be found in [10, 1]

2.1 Definitions

The algorithmic complexity K(x) of x is the length of the shortest executable file that
generates x on a computer U .

Definition 2.1.
K(x) = min{l(p)|U(p) ↓= x}

In the same way we define K(x|y) as the length of the shortest program that produces
x if it has access to a file that contains y. K(x|y ↑) is the length of the shortest program
that generates x using y in such a way that xk is generated before any of the bits of
yk...l(y) has been read. Algorithmic mutual information equals: I(x; y) = K(x)−K(x|y).

A total function f dominates a total function g if there is a c such that f(x)+ c > g(x)
for all x. Let S be a set of total functions and f ∈ S, f is universal in S if f dominates
all elements in S. A universal element in a set of functions is the element of the set
that is bigger up to a constant relative to any other function of the set.



2.2 Undirected independence tests

Definition 2.2. Let P, Q be probability distributions. A total function d : B∗×B∗ → N
is a (P, Q)-independence test for P, Q iff:∑

x,y

P (x)Q(y)2d(x,y) < 2

An independence test d rejects the hypotheses of x and y being independent with con-
fidence 2−d(x,y)+1. In practical situations we do not know the underlaying distribution
P and Q. An independence test is general purpose independence test (gpi-test) if for
all enumerable P, Q a constant cP,Q exists such that d− cP,Q is a (P, Q)-independence
test.

Is there a universal gpi-test in the set S of monotonically approximatable functions?
The answer is positive by theorem 2.3. Denote Σ0

2 as the set of functions that are
enumerable given an oracle for the halting problem.

Theorem 2.3. The set of gpi-tests in Σ0
2 has a universal element which equals I(x; y)+

I(x, y|ξ).

The term I(x, y|ξ) is the mutual information of x, y with the Halting problem. I(x, y)
typically grows with the length of the data while I(x, y|ξ) is believed to be bounded
by a small constant for real systems and is therefor assumed to be negligable.

2.3 Directed Tests

Information flowing from x to y is represented as:

Definition 2.4. Algorithmic information transfer IT (x← y) = K(x)−K(x|y ↑).

Denote px←y as the shortest program that generates x from y as in the definition of
IT . The information arriving in x and y simultaneously is represented as:

Definition 2.5. Common simultaneous common information IT (x = y) = I(px←y; py←x)

Algorithmic mutual information I(x; y) can be decomposed now into directed tests and
simultaneous common information.

Theorem 2.6.

I(x; y) =+c IT (x← y) + IT (y ← x) + I(x = y) + dIT (x, y)

with dIT (x, y) = K(K(x|y ↑), K(y|x ↑)|x, y) <c l∗(l(x)) + l∗(l(y)) and c a constant
independent from x and y.

2.4 Comparison with Literature

y is said to Granger-cause x if the average predictability of xt is better using x1...t−1

and y1...t−1 compared to the the predictability of xt using only x1...t−1 for t = 1...n.
This idea has been developed in many practical algorithms such as [5, 8, 15, 12]. The
approach above fits into this framework by defining predictability improvement as data
compression-lengths K(x), K(x|y ↑).
On the other side, Shannon information transfer (SIT) uses the definitions of informa-
tion content relative to a probability distribution to measure the rate of transmitted
information between two signals: SIT = H(X+|X−)−H(X+|X−Y −) with X+,X−,Y −



Figure 1: Complexity of Modal and Noise

stochastic variables representing the future and past of signals x and y [15, 12]. The
quality of the measure is determined by the quality of the underlaying distribution
but the better the probability distribution describes the data, the more over-fitting is
present and the measure becomes unreliable. For any distribution P datacompression
is linked to Shannon entropies by the formula:

lim
n→∞

EP [K(x1...n)]

n
= H(P )

3 The Influence of Compression non-Ideality

To build practical tests using IT, one uses a datacompressor C to estimating the al-
gorithmic complexities K(x) and K(x|y by C(x) and C(x|y). The approximation of
IT is denoted as CIT . An ideal compressor returns for every x the shortest exe-
cutable file that prints x. In practice we cannot approximate it’s length in a rea-
sonable time, therefor non-ideality of actual compressors are unaviodable. To dis-
cuss them, we show a typical plot of the incremental non-ideal compression length
Cx(n) = C(x1...n|n) − C(x1...n−1|n − 1) for signals with a stationary behaviour. A
typical shape is plotted in figure 1. The total area under the plot represents the to-
tal compression length. This area can be divided in two parts. The highest part is
only visible in the initial bits of the compression. During this stage, the modeling
for the compression is significantly adapted resulting in definite improvements for the
prediction of the following bits. After sample 150 the changes in the model does not
decrease or increase the predictability of the samples significantly. The predictable
part represents the complexity of the noise according to the current model. The first
area represents the complexity of the model as seen by the compressor and the second
part represents the noise in the system.

The model complexity can be very high although the data has a simple structure. This
effect can be explained easily by the following example. Assume the given signal is
xt = (−1)t + ξt with ξt some noise and we apply auto-regression to approximate C(x):
x̂t = a0 + a1xt−1 + ... + akxt−k. In a non-regularised training algorithm any possible
value for the vector a has the same a priory probability. During the prediction of the
first data samples the training algorithm will over-fit because it prefers a vector a′ that
also fits the noise over the ideal a = [0,−1, 1,−1, 1...1]/k.

To approximate C(x|y) one typically has a larger model complexity even if no interac-
tions are present. In the same example we can fit a multivariate auto-regression model
x̂t = a0+a1xt−1+ ...+akxt−k +b1yt−1+ ...+bkyt−k. But now there are 2k+1 coefficients
resulting in a much bigger model complexity. To cure this problem partly, the model
length is not taken into account by ignoring the contribution of the first 150 samples.



The second type of non ideality is induced by fluctuations of δx(n) = Cx(n) −Kx(n)
and δx|y↑ = Cx|y↑ − Kx|y↑ the differences between ideal and non ideal compression
rates. Typically xt is distributed approximately independently from xt+s for s large
enough, therefore C(x) is distributed with variance of the order

√
nσδ, which decreases

the confidence according to
√

n in contrast with the ideal theory that has confidence
bounds independent from the length of the segment under consideration.

In conclusion we have that both types of errors can be suppressed by improved normal-
ization of the models. This indicates that better regularisation corresponds to improved
tests for independence. The other way around, measuring independence can be used
to improve model generalization.

4 Measuring Time Dependent Interactions

Suppose two noisy oscillators with momentary interactions. The aim is to detect the
time intervals of the interactions. Define the instantaneous ideal and non ideal infor-
mation transfer ITx(n) = Kx(n) −Kx|y↑(n) and CITx(n) = Cx(n) − Cx|y↑(n). Notate
Z(m...n) =

∑n
i=m Z(i) for Z = Cx, Cx|y↑, IT, CIT .

If no interactions are present for the samples n to n+τ then Cx(n...n+τ) > Cx|y↑(n...n+
τ). But in the ideal case, the compression with side information can never be lower
than without. This is caused by over-fitting and the presence of noise. On the other
hand, if interactions are present, Cx|y↑(n) decreases. A new compressor C ′ is build to
ensure C(x) > C ′(x|y ↑) by the results of the compression Cx and Cx|y↑. At each time
instance n a classification algorithm decides to predict according to Cx or to Cx|y↑. It
turns out that if C ′(x|y ↑) << C(x) the quantity C ′ITx(n...n + τ) = Cx(n...n + τ) −
Cx|y↑(n...n + τ) returns the expected exponential confidence bounds. Any parameters
for the classification algorithm can be trained by optimizing the compression length.

We can construct a third compressor C ′′ by using two compressors Cint and CnoInt.
Cint is trained by the samples which were classified as interacting by the classification
algorithm above and CnoInt was trained by the other samples. In this way, the mod-
elling can be improved iteratively, but a second iteration did not result in a significant
improvement.

Finally we decide at each time point the presence of interactions by the formula:

C ′′ITx|y↑(n− k...n + k)

2k + 1
>

C ′′IT (x|y ↑)
l(x)

5 Tests and results

The algorithm described above was implemented using support vector regression. Sup-
port vector regression outperformed linear regression and neural networks because be-
cause in errors of both types as described in section 3. This is not surprising because
support vector regression was invented using a rigorous mathematical regularisation
theory: structural risk minimization. The compressor C ′ classified each n-th sam-
ple according to the sign of CITx|y↑(n − k...n − 1). k was trained to have optimal
compression length C ′(x).

To relate mean square error into datacompression, one estimates the variance σ̂ of the
data and assumes for each prediction x̂n that xn − x̂n a Gaussian distribution σ. In
this simple case the compression length is closely related to mean square error.



The algorithm was tested by data sampled from coupled oscillators with momentary
interactions i(n) = 0, 1. To detect the presence of interactions:

φ̇1 = ω1 + εi(t) sin(φ2 − φ1) + ξ1

φ̇2 = ω2 + ξ2

The noise ξ1 and ξ2 are independent and Gaussian distributed with mean 0 and stan-
dard deviation 0.2. The frequencies are ω1 = 0.9 and ω2 = 1.1. The oscillators were
integrated using the Euler method in time steps of 0.005. The signals were sampled at
times 0, π/7, 2π/7, .... The interaction i(m) was switched on first for a long period and
interchanged rapidly after this, see figure 2f.

The average accuracy of î(t) relative to i(t) versus interaction strength was plotted for
an interaction length n = 100 and n = 500. In the second case the accuracy is bigger
because most errors occur near the borders of the interaction regions in 2a. For very
short interactions periods and strong interaction, the accuracy remains remarkable high
as can be seen in 2b.

The method was compared to SIT as described in [12]. It turned out that for these
short signals estimated entropies with 4 bins outperformed the choice of any other
bin number. To compare both methods we asked them to classify the non-interacting
and interacting intervals. To compare the reliability of the classification we consider
the area under the ROC curve (AUC) to evaluate both IT and SIT as a classification
parameter. AUC are standardly used to compare the performance of ranking variables
for classification by a ranking parameter [4].

The AUC of SIT and IT were plotted in figure 2c and 2d. In figure 2c we find AUC
slightly below 0.5 for both SIT and AIT in the case of very weak interactions. This
slight remarkable effect can be explained to remark that the support vector regression
model for C(x|y ↑) and the histograms for calculating H(X+|X−Y −) are not able to
discover any relationship in the short data in case of short very weak interactions.
Moreover, there performance decreases disproportionate due to an increase of noise in
φ1 during the interaction (ξ1 vs. ξ1 + εξ2). Because the increase of noise is bigger for
C(x|y ↑) and H(X+|X−Y −) than for C(x) and H(X+|X−) as discussed in section 3,
both SIT and IT suffer from reverse ordering and biased classification in the case of
short and very weak interactions. However, in the case of AIT this effect is clearly
smaller.

Figure 2d demonstrates the validity of the theoretical confidence for the classification
of segments with a large variety of lengths and interaction strengths.

6 Conclusion

Algorithmic information transfer has been shown to be a useful concept for constructing
and investigating directed independence tests. A deep connection between modeling-
non-ideality and regularization was demonstrated. An implementation using support
vector regression showed to be a reliable method for classifying segments of interac-
tion and non-interaction that outperformed Shannon information transfer. Finally we
showed the possibility to detect the moments of interaction even for very short inter-
action lengths.
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Figure 2: Performance of algorithmic information transfer
(a) accuracy of î(n) with respect to i(n) versus interaction strength ε for interaction
lengths 100 and 500. (b) same accuracy versus interaction length for strong interaction
strengthε = 0.1. (c) AUC of algorithmic and Shannon information transfer for the classifica-
tion of interacting and non-interacting signals with length 200 versus interaction strength. (d)
Same AUC for an interaction strength of 0.05 and varying interaction length. (e) Actual con-
fidence versus theoretic confidence for the classification of 600 interacting and non-interacting
signals with lengths interaction strengths ε =0.035,0.06,0.08 en 0.1 and interaction lengths
n=20, 50, 100, 200, 500, 700. (f) Presence of interactions versus samples.
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