
Design of a Security Mechanism for RESTful Web
Service Communication through Mobile Clients

Femke De Backere, Brecht Hanssens, Ruben Heynssens, Rein Houthooft, Alexander Zuliani,
Stijn Verstichel, Bart Dhoedt and Filip De Turck

Information Technology Department (INTEC), Ghent University - iMinds,
Gaston Crommenlaan 8, bus 201, 9050 Ghent, Belgium

Email: Femke.DeBackere@intec.UGent.be

Abstract—Security is not taken into account by default in
the Representational State Transfer (REST) architecture, but
its layered architecture provides many opportunities for imple-
menting it. In this paper, a security mechanism for Web service
communication through mobile clients devices is proposed, that
conforms to the REST architecture as much as possible. Results
indicate that the custom security mechanism outperforms the
Transport Layered Security (TLS) based system. Because of the
genericness of REST, the proposed security mechanism can be
adopted by a wide variety of other RESTful Web services.

I. INTRODUCTION

Representational State Transfer (REST) [1] is an architec-
tural pattern, specifically tailored to building applications and
Web Services that are distributed over the public Internet.
Resources within the REST architecture can be manipulated
through a set of unique Uniform Resource Identifiers (URIs).
By sending universal Hypertext Transfer Protocol (HTTP)
methods to these URIs, certain actions on the resources they
represent can be performed. HTTP status codes are then used
to send feedback to the client. These actions are already
provided by HTTP, accelerating the adoption of REST [2].
The use of these URIs to transfer important data may result
in privacy breaches as data is not anonymized.

As Web Services conforming to the REST constraints are
based on HTTP, they suffer from the same inconveniences
as many other standard web applications. The following ma-
licious activities: Man-in-the-Middle attack (MITM), replay
attack, spoofing and message altering, need to be taken into
account when designing a good security mechanism. RESTful
Web services are stateless. This means that every request is
only dependent on itself, one simply has to examine the request
to gather all the details concerning it. Stateless also means that
the service is more reliable, because there are less steps where
something can go wrong. In distributed services, the lack of
state means that there is no overhead to keep the different
servers consistent. A downside, however, is that data tends to
be sent in a rather repetitive way, because no history is saved,
possibly resulting in a larger overhead than typical stateful
alternatives. The notion of state in larger applications is often
very present, making communication in a stateless way a non-
trivial task.

REST is often treated as an alternative to Simple Object
Access Protocol (SOAP), although both cannot be directly

compared. REST is an architecture for building (web) applica-
tions, whereas SOAP is a protocol for exchanging structured
information between services and applications. SOAP is com-
monly used in today’s Web Services, and uses Web Services
Security (WSS) [3] to cope with the aspect of security.

This paper introduces a security mechanism, using only
a bare minimum of non-RESTful elements, keeping the
lightweight character of mobile clients in mind, which means
preserving battery power and limiting data transfer and mes-
sage overhead. The suggested implementation is then com-
pared to a fully TLS-based solution. The remainder of this
paper is organized as follows. Related work of existing security
mechanisms can be found in Section II. Section III will explain
the custom security mechanism, followed by evaluation results
in Section IV. Finally, conclusions can be found in Section V.

II. RELATED WORK

In Table I, a comparison is made between known security
mechanisms, keeping in mind their suitability in a RESTful
architecture. Nowadays, the capabilities and restrictions of
smartphones need to be taken into account. Security mecha-
nisms thus need to require low processing power to support the
battery lifetime and the ability to function in varying network
circumstances with respect to mobile interaction.

As RESTful Web services are stateless, they do not usually
have any kind of session, in which to perform a challenge-
response mechanism. Popular known mechanisms such as
Open Authorization (OAuth) [4] and OpenID [5] therefore
violate the strict principles of a RESTful architecture, simply
because they are stateful.

Transport Layer Security/Secure Sockets Layer (TLS/SSL)
provides secure peer-to-peer authentication, but this mecha-
nism is inadequate when requests for authentication are based
on delegation, allowing sites to authenticate on behalf of
their users [6]. HTTP Secure (HTTPS) is widely used for
confidentiality but it only provides hop-to-hop security.

A good solution, obeying the RESTful principles, is a token-
based approach [7]. This approach lets the service generate a
token on the first request, when users enter their user name and
password. The token is then sent to the client, who will add
it to every further request to access a certain REST resource.
This token should not be bound to any data, as it is merely a
substitution for a user name and a password. Once a token has

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55678045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TABLE I
COMPARISON OF KNOWN SECURITY MECHANISMS

Open Authorization (OAuth) [4]
Pros: Purpose is to grant other systems access to one’s account without
sharing user name/password. Done by sharing authentication tokens. Tokens
can be revoked at any time.

Cons: Relies on sessions in which client information must be stored at the
server-side in order to authorize them, not stateless.

OpenID [5]
Pros: General authentication service for multiple web applications, e.g.
Google. Use of authentication tokens for authentication.

Cons: Third party service trusted for all authentication purposes. Authenti-
cation by URI, users needs to remember this URI, hence not stateless.

Transport Layer Security (TLS/SSL) [6]
Pros: Can cope with message-sniffing & -altering and MITM- & replay-
attacks. Data is fully encrypted. Client and server authenticate using a digital
certificate. Use of new session keys with every connection makes it resistant
to offline key cracking.

Cons: Use of certificates is hard to manage and binds users to a specific
device. Requires connection to stay alive. Huge overhead with each connec-
tion setup due to handshaking process. REST requires new connection and
session keys with each client/server interaction.

Token-based authentication (sessions) [7]
Pros: Standard authentication principle used by many Web services, appli-
cations and sites. Sessions are easy to manage.

Cons: Login details only have to be sent once, whereupon a session is set up.
Malicious client can take over communication when the token is obtained.

HTTP Digest Authentication Scheme (DAS) [8]
Pros: Extension of HTTP BAS. Relatively low processing needed. User
name/password sent with nonce after hashing, can only be retrieved by
inverse transformation. Use of nonce to withstand chosen plaintext and replay
attacks.

Cons: Server chooses reduced security if client does not support latest
technology. Can be avoided by disallowing server to reduce its security level.
Servers do not authenticate to clients, making it vulnerable to MITM-attacks.
MD5, used as hash function is outdated.

been obtained the user can offer this token to the remote site,
which guarantees them access to a specific REST resource
for a certain amount of time. When the token is obtained by
a malicious client, it can take over communication with the
RESTful Web Service.

III. PROPOSED SECURITY MECHANISM

In most existing mechanisms, a lot of the security elements
used are stateful, and thus not conform to the RESTful
principles. In the presented system, only the most essential
non-RESTful elements are added. Whenever a non-RESTful
element is added, a motivation is given concerning the reason
why. The constructed system makes use of different crypto-
graphic functions.

A. Security requirements

In many applications, four different types of client authen-
tication for REST resource access can be distinguished: i)
public, ii) proof of previous login is required, iii) direct login
details are necessary and iv) an offline challenge-response
system is recommended.

Since the emphasis in this paper is on a lightweight solution
for mobile clients, where using battery power and data transfer
is kept to a bare minimum, a distinction has to be made
concerning the need for message confidentiality. Not every
message should be encrypted, e.g., public GET requests can
be sent over in plain text. However, more critical messages
can require an encrypted connection to thwart packet sniffing.
It can be important that a message is not-modifiable, e.g.,
an adversary should not be able to change the date of a
newly created entry by altering the POST message contents.
Moreover, it can be important to avoid replayed messages.
For example, a replayed delete request should be noticed.
However, not every message should be protected against replay
attacks, as for example, a regular GET request does not alter
a REST resource.

B. Login mechanism

The login mechanism used in the designed system is shown
in Algorithm 1. Users authorize themselves by the combination
of a user name (un) and a password (pw). The back-end
server will store this un and a hashed version of the pw
combined with a salt: H(H(pw)+salt). By only sending
and storing a hashed version of the pw, the server can never
leak the passwords of users, even in case of a hack. Adding
a salt prevents an adversary (in case of a cracked database)
from performing an offline brute force or dictionary attack on
different passwords simultaneously. This approach also greatly
decreases the effectiveness of rainbow tables to reverse hashes.
The server should thus store at least the following data: un,
H(H(pw)+salt), salt. Although storing user-bound data
is not conform to the REST principles, it is essential for a
strong security system.

The server authorizes to the user by using a digital cer-
tificate. When downloading the application, the certificate is
downloaded as well. This certificate is signed by a certificate
authority (CA), ensuring its correctness. It can be checked
by verifying the certificate chain up to the root CA. When
the client connects to the server, he/she will provide his/her
un and pw. This combination cannot be sent in plain text
for security reasons and the server has to be trusted first.
That is why during the login phase a TLS connection will be
used. The client sends un/H(pw), this way his/her password
never leaves the client system in plain text. By using a TLS
connection, replay and offline guessing attacks can be avoided.

Upon receiving the combination of (un, H(pw)), the
server will calculate H(H(pw)+salt) and compare it to
the value stored in the database. After this, the server will
calculate an authentication token AT and a symmetric key SK.
It also binds an expiry date expDate to this token. The AT
can be seen as RESTful, it is simply a surrogate for a un
and pw. The SK and the expDate however are not. Either
way, the SK is essential for providing data integrity and the



Algorithm 1: User login

input : user fills in details and presses login button
output : user is logged in

1 C ↔ S : setupTLSConnection(serverCertificate)
2 C : TSc ← getCurrentTime()
3 C : hashc ← H (pw)
4 C → S : sendLoginDetails(un, hashc, TSc)
5 S : hash salts, salt ← lookupInDB(un)
6 S : verify(H(hashc + salt), hash salts)
7 S : prevTSc ← TSc

8 S : AT ← calcAuthToken()
9 S : SK ← calcSecretKey()

10 S : TSs ← getCurrentTime()
11 S : saveExpDateInDB(TSs + T)
12 C ← S : send(AT, SK, TSs)
13 C : prevTSs ← TSs

expDate is needed to close the session when a user forgets
to logout or his/her AT/SK gets stolen. Now, the database
holds the following data: un, H(H(pw)+salt), salt, SK,
AT, expDate. When the expDate is reached, the AT/SK
is destroyed. This prevents other people to keep using this
AT/SK combination when using a public device where a
previous user forgot to logout. After this the AT/SK is sent to
the client over the TLS connection, after which the connection
is shut down.

C. REST resource access

The user-resource interaction mechanism used in the system
is shown in Algorithm 2. When a client wishes to access a
REST resource, he/she will add a timestamp TS and his/her
AT to his/her request. The total message will be signed by a
HMAC using the SK. A Hash-based Message Authentication
Code (HMAC) provides message integrity and authentication.
Because the user never has to sent his/her un again, this
provides an extra layer of security. The AT will be thrown
away after a time expDate, thus it is not as critical as a
permanent user name. By making use of an AT, the un and
pw do not have to be stored on the (possibly public) client
system.

On receiving this message, the server will look up the
correct database entry by using the AT. Then, he/she will
calculate the HMAC using the SK stored. He/she will also
check if the expDate has not been reached and that the TS of
the latest message is higher than the previous one. Because of
the use of a TS, replay attacks are impossible. It thus ensures
message freshness. However, using a user-bound timestamp
is not RESTful. An adversary can never forge a request as
he/she does not possess the SK to calculate the HMAC. This
provides protection to offline guessing attacks. A request can
also never be modified as a hash function is being used.

The server will add a TS to its own response to the client to
ensure message freshness. The server can either encrypt the

data by using the SK with symmetric encryption (or make
use of TLS), or simply not encrypt the data at all. Either
way, the server should authenticate its message by signing
it with his/her own private key (the one used to sign the
digital certificate). Alternatively, it can use the same HMAC
as the client to authenticate itself. Upon acquisition of this
response the client will check the TS to the last saved TS.
If it is higher, the message passes the first check. Then
the digital signature is checked using the certificate stored
in the application. If this passes the test, the message is
considered safe and thus accepted. Alternatively, instead of
timestamps, nonces can be used. However, this requires extra
message overhead as these nonces have to be sent back and
forth at every request/response. Nevertheless, it does eliminate
the requirement of clock synchronization between client and
server, which is essential for loose coupling. When logging
out, the user does not send a TS, only the SK is needed. When
logged out the same thing happens as if the expDate was
reached. The AT/SK are destroyed at server-side. If a user
logs in on a different system, the old AT/SK combination is

Algorithm 2: User-resource interaction

input : user is logged in, possesses SK and AT
output : user receives resource representation

1 C : HTTPReq ← createHTTPReq()
2 C : TSc ← getCurrentTime()
3 C : HTTPReq.add(AT, TSc)
4 C : HMAC ← HMAC(HTTPReq.body, SK)
5 C : HTTPReq.add(HMAC)
6 C : symEncrypt(HTTPReq.body, SK)
7 C → S : send(HTTPReq)
8 S : AT ← HTTPReq.get(AT)
9 S : expDate, SK, prevTSc ← lookupInDB(AT)

10 S : symDecrypt(HTTPReq.body, SK)
11 S : verify(HTTPReq.TSc > prevTSc)
12 S : verify(currentTime < expDate)
13 S : HMACc ← remove(HTTPReq.HMAC)
14 S : HMACs ← HMAC(HTTPReq.body, SK)
15 S : verify(HMACs = HMACc)
16 S : prevTSc ← HTTPReq.TSc

17 S : HTTPResp ← createHTTPResp()
18 S : resource ← retrieveResource()
19 S : TSs ← getCurrentTime()
20 S : HTTPResp.add(resource, TSs)
21 S : sign ← digSign(HTTPResp.body)
22 S : HTTPResp.add(sign)
23 S : symEncrypt(HTTPReq.body, SK)
24 C ← S : send(HTTPResp)
25 C : symDecrypt(HTTPReq.body, SK)
26 C : verify(HTTPResp.TSs > prevTSs)
27 C : sign ← remove (HTTPResp.sign)
28 C : verify(HTTPResp.body, sign, PKs)
29 C : prevTSs ← HTTPResp.TSs



 0

 500

 1000

 1500

 2000

 2500

 3000

TLS Custom

o
ve

rh
e

a
d

 (
b

yt
e

s)

2937

1869

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

TLS Custom

o
ve

rh
e

a
d

 (
m

s)

370

264

Fig. 1. Messaging overhead (left) and processing overhead (right).

also destroyed. This message may be replayed as a logout is
only possible once. If a user forgets to log out, the next user of
the (possibly public) device can only capture the AT/SK. The
un/pw are not stored in the application. This AT/SK are only
usable for a limited period of time. However, much damage
can be done in this short period of time. This is why critical
functions require the use of the un/H(pw) of the user.

The symmetric encryption process on lines 6, 10, 23 and
25 in Algorithm 2 is optional and should only be used when
data confidentiality is required. It can be switched on and off
dynamically based on the communication context.

IV. EXPERIMENTAL SETUP AND RESULTS

To evaluate this security mechanism, it is applied to the
login procedure of a prototype of a location-aware social
network. Then, it is compared with a system that is fully TLS-
based. This TLS-based system simply requires a user to login
after which an authentication token is returned, which is added
to every message. After this, every REST resource access is
tunneled through a TLS link, which is a strong way to secure
RESTful Web services.

The two mechanisms are compared based on their message
and execution overhead in Figure 1. The client used for these
measurements was a 2.66 GHz Intel Core 2 Duo with 4 GB
RAM laptop. The test application was deployed on Google
App Engine (GAE). For the messaging tests Wireshark has
been used to compare the size of the IP-packets. The results
indicate that the custom security system performs 36.4% better
in terms of messaging overhead and 28.6% better in terms of
processing overhead. Also the ratio of the standard deviation to
the average value is lower for the custom built system (22.6%)
compared to the TLS-based system (27.9%).

The scalability of the proposed mechanism was also inves-
tigated. The Virtual Wall at iMinds was used in combination
with the Spirent Avalanche framework to simulate a large
number of users simultaneously. For the acquisition of this
data, the request rate was steadily increased until the desired
level and waited until the response time, averaged over a
four second interval, was stabilized. The actual response time
average and standard deviation were calculated over a 40-
second interval. Figure 2 shows a large increase in deviation
as the load increases, this is caused by the development
server provided by Google, which is not meant for production

 30

 35

 40

 45

 50

 55

 60

5 10 20 30 40 50 60 70 80 90 100

re
sp

o
n
se

 la
te

n
cy

 (
m

s)

requests per second

Custom: fitted

TLS: fitted

Custom: avg. and σ

TLS: avg. and σ

Fig. 2. Scalability: response latency as a function of request rate

use and as such it does not fairly schedule a large amount
of simultaneous requests. The custom system started failing
(dropping a high number of requests) around 100 requests
per second. The TLS-based system lasted until around 140
requests per second. On GAE, this would not happen because
of the automatic scaling provided for both the application and
the database. These results remain relevant because it gives an
idea of how both mechanisms compare under stress in terms of
computational overhead. It is obvious the custom built system
contains less unnecessary overhead data. The system is also
faster than the TLS system, because TLS has to perform a
handshake and generate keys for every request.

V. CONCLUSIONS

The aspect of security remains a big issue for RESTful Web
services. Many of the current security mechanisms violate
the RESTful principles and are, because of their stateful
nature, not able to cope with the scalability advantages that
REST provides. Basic RESTful security standards are outdated
and omit vital security solutions. TLS seems to be a usable
standard, nonetheless, the overhead introduced is too large
for non-continuous connections, as with mobile interaction.
Therefore, a custom security mechanism is proposed, using
only a bare minimum of non-RESTful elements. Comparing
this implementation with a fully TLS-based solution shows
that this method outperforms the latter, both on the aspect of
messaging as processing overhead. Because of the genericness
of REST, our proposed security mechanism can be adopted by
a wide variety of other RESTful Web services.

REFERENCES

[1] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, Uni. of Cal., Irvine, 2000.

[2] G. Serme et al., “Enabling Message Security for RESTful Services,” in
Proc. 19th IEEE ICWS, Jun. 2012, pp. 114–121.

[3] M. Naedele, “Standards for XML and web services security,” Computer,
vol. 36, no. 4, pp. 96–98, Apr. 2003.

[4] H. Eran, “The OAuth 1.0 Protocol,” Internet Requests for Comment, RFC
Editor, Fremont, CA, USA, Tech. Rep. 5849, Apr. 2010.

[5] D. Recordon et al., “OpenID 2.0: A Platform for User-Centric Identity
Management,” in Proc. 2nd ACM DIM, 2006, pp. 11–16.

[6] R. Malisetti, “Securing RESTful Services with Token-Based Authentica-
tion,” CA Technology Exchange, vol. 1, pp. 43–48, Apr. 2011.

[7] A. Renner, “RESTful Web Services,” Fort Lewis College, 2008.
[8] D. Peng et al., “An extended UsernameToken-based approach for REST-

style Web Service Security Authentication,” in Proc. 2nd IEEE ICCSIT,
Aug. 2009, pp. 582–586.


